Naručitelj: Vodakom d.o.o. Pitomača

Broj projekta: I-1662/16

U Osijeku, rujan 2016. godine
Broj projekta: I-1662/16

ELABORAT ZAŠTITE OKOLIŠA

SUSTAV ODVODNJE I PROČIŠĆAVANJA OTPADNIH VODA AGLOMERACIJE PITOMAČA

NARUČITELJ: Vodakom d.o.o. Pitomača

LOKACIJA: Pitomača

VODITELJ IZRADE: mr.sc. Antonija Barišić-Lasović, mag. ing. tech. aliment.

SURADNICI:

Branimir Barać, mag.ing.aedif.
Ana Pihler, mag.ing.aedif.
Zoran Vlainić, mag.ing.aedif.
Dražen Brleković, mag.ing.aedif.
Igor Tadić, mag.ing.aedif.
Eldar Ibrahimović, prvostupnik zaštite okoliša

Direktor:

Vjekoslav Abičić, mag.oec.

U Osijeku, rujan 2016. godine
SADRŽAJ:

0. OPĆI AKTI ... 1
 0.1 Registracija tvrtke .. 1
 0.2 Suglasnost za obavljanje stručnih poslova zaštite okoliša ... 6

1. UVODNE INFORMACIJE .. 9

2. PODACI O ZAHVATU I OPIS OBILJEŽJA ZAHVATA ... 10
 2.1 Postojeće stanje .. 10
 2.2 Opis glavnih obilježja zahvata .. 11

3. PODACI O LOKACIJI I OPIS LOKACIJE ZAHVATA .. 21
 3.1 Opis stanja okoliša ... 21
 3.2 Geološka obilježja ... 22
 3.3 Hidrološki i hidrogeološki podaci .. 22
 3.4 Klimatske karakteristike područja .. 23
 3.5 Rizici od poplava .. 24
 3.6 Stanje vodnog tijela .. 35
 3.7 Zone sanitarne zaštite ... 43
 3.8 Zaštićena područja ... 44
 3.8.1 Zaštićena područja prema Zakonu o zaštiti prirode ... 44
 3.8.2 Ekoška mreža – Natura 2000 ... 48
 3.8.3 Nacionalna klasifikacija staništa ... 50
 3.9 Kulturno povijesna baština .. 53
 3.10 Prostorno – planska i ostala planska dokumentacija ... 54

4. OPIS MOGUĆIH ZNAČAJNIH UTJECAJA ZAHVATA NA OKOLIŠ ... 57
 4.1 Mogući utjecaji na okoliš tijekom građenja i korištenja zahvata .. 57
 4.1.1 Vode i stanje vodnog tijela ... 57
 4.1.2 Utjecaj na tlo .. 59
 4.1.3 Utjecaj na zrak ... 60
 4.1.4 Klimatske promjene ... 61
 4.1.5 Utjecaj klimatskih promjena na projekt ... 66
 4.1.6 Zaštićena područja ... 70
 4.1.7 Kulturno povijesna baština .. 71
 4.1.8 Krajobraz .. 71
4.1.9 Bioraznolikost ... 72
4.1.10 Postojeća infrastruktura .. 74
4.1.11 Buka .. 75
4.1.12 Otpad .. 75
4.1.13 Akcidenti ... 77
4.2 Mogući utjecaji na okoliš nakon prestanka korištenja zahvata 78
4.3 Vjerojatnost značajnih prekograničnih utjecaja ... 78
4.4 Mogući značajni utjecaji zahvata na zaštićena područja .. 78
4.5 Mogući značajni utjecaji zahvata na ekološku mrežu Natura 2000 78
4.6 Opis obilježja utjecaja .. 78
5. PRIJEDLOG MJERA ZAŠTITE OKOLIŠA I PRAĆENJE STANJA OKOLIŠA AKO SU
 RAZMATRANI .. 81
5.1 Mjere zaštite okoliša tijekom građenja zahvata ... 81
5.2 Mjere zaštite okoliša tijekom korištenja zahvata ... 81
5.3 Mjere zaštite okoliša nakon prestanka korištenja zahvata 81
6. IZVORI PODATAKA ... 82
0. OPĆI AKTI

0.1 Registracija tvrtke

REPUBLIKA HRVATSKA
TRGOVAČKI SUD U OSIJEKU

IZVJAK IZ SUDSKOG REGISTRA

SUBJET OPISA

MBS: 030025615
OIB: 08428329477

TVRTKA:
1 HIDROING d.o.o. za projektiranje i inženjering
1 HIDROING d.o.o.

SJEDINSTE/ADRESA:
5 Osijek (Grad Osijek)
Tadije Sničklasa 1

PRAVNI OBLIK:
1 društvo s ograničenom odgovornošću

PREDMET POSLOVANJA:
1 45.2 - Izgradnja grad. objekata i dijelova objekata
1 45.32 - Izolacijski radovi
1 45.33 - Instalacije za vodu, plin, grijanje, hlađenje
1 45.34 - Ostali instalacijski radovi
1 45.4 - Završni građevinski radovi
1 45.5 - Izrav. grad. strojeva i opr. s rukovateljem
1 51.1 - Posredovanje u trgovini (trgovina na veliko uz
naknada ili na ugovornoj osnovi)
1 51.2 - Trg. na velike polj. sirovinama, životn. stokom
1 51.3 - Trg. na velike hranom, pićima, duhan. proizv.
1 51.6 - Trg. na velike strojevima, opremom i priborom
1 70 - Poslovanje nekretninama
1 72 - Puštenje i izrada zgrada
1 31 - Izrada zgrada
1 32 - Uvođenje u zgrade i druge građevinske objekte
1 33 - Izgradnja električnih vodova i pribora
1 34 - Uvođenje u zgrade i druge građevinske objekte
1 35 - Izgradnja telekomunikacijskih sustava
dizala i pokretnih stepenica
1 36 - Izrada stručno-izrada

DC04, 2016-07-26 09:39:34
Broj projekta: I-1662/16
Voditelj izrade: mr. sc. Antonija Barišić-Lasović, mag. ing. tech. aliment.
Naručitelj: Vodakom d.o.o. Pitomac

ELABORAT ZAŠTITE OKOLIŠA
SUSTAV ODVODNJE I PROČIŠĆAVANJA OTPADNIH VODA AGLOMERACIJE PITOMAČA

REPUBLIKA HRVATSKA
TRGOVAČKI SUD U OSIJEKU
IZDAVK IZ SUDSKOG REGISTRA
SUBJET UPIŠA:

PREDSMAT POSLOVANJA:
kontrole zagadživanja i projekata

akusičnosti,...
1 * - Geološke i istražive djelatnosti
2 * - Izvođenje investicijskih radova u inozemstvu
3 * - Poslovi izrade stručnih podloža i elaborata zaštite okoliša
4 * - Poslovi stručne pripreme i izrade studije utjecaja na okoliš
5 * - Izrada elaborata stalnih geodetskih točaka za potrebe osnovnih geodetskih radova
6 * - Izvođenje geodetskih radova za potrebe izmjere, oznacavanja i održavanja državne granice
7 * - Izrada elaborata topografske izmjere i izrade državnih karata
8 * - Izrada elaborata katastarske izmjere i tehničke rezbirajnice
9 * - Izrada parcelacijskih i drugih geodetskih elaborata katastra zemljišta
10 * - Izrada parcelacijskih i drugih geodetskih elaborata katastra nekretnina
11 * - Izrada elaborata katastra vodova i tehničko vodjenje katastra vodova
12 * - Izrada posebnih geodetskih podloga za prostorno planiranje i graditeljsko projektiranje, izradbu geodetskih projekata, izradbu elaborata o isklopljenju građevina, kontrola geodetska mjerenja pri izradnji i održavanju građevina (praćenje mogućih pomaka)
13 * - Izrada situacijskih natrica za objekte za koje se treba izraditi geodetski projekt
14 * - Istočenje građevina
15 * - Izrada posebnih geodetskih podloga za zaštićena i štićena područja
16 * - Geodetski radovi u komunikacijama
17 * - Poslovi stručnog nadzora nad radovima izrade elaborata katastra vodova i tehničkog vodjenja katastra vodova, izrada posebnih geodetskih podloga za prostorno planiranje i graditeljsko projektiranje, izradbe geodetskoga projekta, izrabe elaborata o isklopljenju građevina, kontrolna geodetska mjerenja pri izgradnji i održavanju građevina (praćenje mogućih pomaka), isklopljenja građevina i izrada posebnih geodetskih podloga za zaštićena i štićena područja.
18 * - Stručni poslovi prostornog uređenja
19 * - Projektiranje, građenje, uporaba i uklanjanje građevina
20 * - Projektiranje vodnih građevina
21 * - Poslovni izravi projektne dokumentacije za vodogospodarske građevine i vodne sustave
22 * - Poslovni izravi studija prihvatljivost.
ELABORAT ZAŠTITE OKOLIŠA
SUSTAV ODVODNJE I PROČIŠĆAVANJA OTPADNIH VODA AGLOMERACIJE PITOMAĆA

REPUBLICA HRVATSKA
TRGOVAČKI SUD U OSIJEKU
IZVJEDAK ZA XI UDJEDSKOG REGISTRA

SUBJET UPISA:

PREĐEDANJE POSLOVANJA:
planiranog zahvata za prirodu

OSNIVAČI/ČLANOVI DRUŠTVA:

9 Zdenko Tadić, OIB: 30440152068
Osijek, Antuna Kanižića 72
9 - član društva

9 Vjekoslav Abičić, OIB: 34024974378
Oršovica, Josipa Poljaka 21
9 - član društva

OSOBE OVLASTE ZA ZASTUPANJE:

4 Vjekoslav Abičić, OIB: 34024974378
Oršovica, Josipa Poljaka 21
4 - član uprave

4 - direktor, samostalne, bez ograničenja

13 Zdenko Tadić, OIB: 30440152068
Osijek, Antuna Kanižića 72
13 - član uprave

13 - zastupa društvo pojedinačno i samostalno

TEHNEONI KAPITAL:
5 900.000,00 Kuna

PRAVNI ODNOSE:
Osnivački akt:

1 Društveni ugovor o usklađenju općih akata i temeljnog kapitala sa ŽTD od 09.12.1995.

2 Odluka o izmjeni Društvenog ugovora od 23.10.2002. godine.

kom članovi društva mijenjaju član. Društvenog ugovora, koji se odnosi na predmet poslovanja, te članak 14. Društvenog ugovora u dijelu, koji se odnosi na adresu člana uprave.

5 Izjava o izmjeni Društvenog ugovora od 24.05.2005.g., kojim jedini član Društva mijenja naslov akta o usklađenju, te odredbe članka 2. i članka 6. koje se odnose na mjediste Društva i temeljni kapital, te održanu koje se odnose na jedinog člana Društva i ostale odredbe

6 Izjava o izmjeni Izjave o usklađenju od 13.02.2008. godine.

kojom jedini član društva mijenja odredbe 5. i 9. koji se odnosi na dopunu djelatnosti i poslovno usjelo. Društveni ugovor od 16.03.2009.g., sklopljen od strane članova društva, koji u cijelosti zamjenjuje Izjave o

P004, 2016-07-26 09.39.34
Broj projekta: I-1662/16
Voditelj izrade: mr.sc. Antonija Banšić-Lasović,
mag. ing. tech. aliment.
Naručitelj: Vodakom d.o.o. Pitomača

SUSTAV ODVODNJE I PROČIŠĆAVANJA OTPADNIH VODA AGLOMERACIJE PITOMAČA

ELABORAT ZAŠTITE OKOLIŠA

REPUBLICA HRVATSKA
TRGOVAČKI SUD U OSIJEKU
IZVADAK IZ SUDSKOG REGISTA

SUBJEKT UPISA

PRAVNI ODNOSE:

Osnivački akt:
usklađenju od 13.02.2008. g. sa svim njenim izmjenama
8. Odluka o izmjeni društvenog ugovora od 24.09.2010.g., kojom
članovi društva dopunjuju čl. 4. Društvenog ugovora novim
djelatnostima, te prečišćeni tekst Društvenog ugovora od
24.09.2010.g.

Promjene temeljnog kapitala:
5. Odluka o povećanju temeljnog kapitala od 18.05.2005.godine,
kojom član Društva povećava temeljni kapital sa iznosa
20.000,00 za iznos 880.000,00 kn, unesen iz zadržane dobiti,
estalnih rezervi Društva te u stvarima, na iznos od
900.000,00 kn

OSTALI PODACI:
1. RUL 1-1265

FINANCIJSKA IZVJEŠĆA:

Preduvođeno God. Za razdoblje Vrsta izvješća
eu 29.06.16 2015 01.01.15 - 31.12.15 GFI-POD izvještaj

Upise u glavnu knjigu proveli su:

<table>
<thead>
<tr>
<th>RB/J Tt</th>
<th>Datum</th>
<th>Nativ suda</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001 Tt-55/2046-2</td>
<td>21.05.1986</td>
<td>Trgovački sud u Osijeku</td>
</tr>
<tr>
<td>0002 Tt-02/2078-6</td>
<td>02.12.2002</td>
<td>Trgovački sud u Osijeku</td>
</tr>
<tr>
<td>0003 Tt-04/1119-2</td>
<td>29.09.2004</td>
<td>Trgovački sud u Osijeku</td>
</tr>
<tr>
<td>0004 Tt-04/1220-4</td>
<td>22.10.2004</td>
<td>Trgovački sud u Osijeku</td>
</tr>
<tr>
<td>0005 Tt-05/732-3</td>
<td>04.07.2005</td>
<td>Trgovački sud u Osijeku</td>
</tr>
<tr>
<td>0006 Tt-08/433-2</td>
<td>12.03.2008</td>
<td>Trgovački sud u Osijeku</td>
</tr>
<tr>
<td>0007 Tt-09/459-4</td>
<td>20.03.2009</td>
<td>Trgovački sud u Osijeku</td>
</tr>
<tr>
<td>0008 Tt-10/1547-3</td>
<td>30.09.2010</td>
<td>Trgovački sud u Osijeku</td>
</tr>
<tr>
<td>0009 Tt-10/1614-2</td>
<td>20.10.2010</td>
<td>Trgovački sud u Osijeku</td>
</tr>
<tr>
<td>0010 Tt-13/182-2</td>
<td>15.01.2013</td>
<td>Trgovački sud u Osijeku</td>
</tr>
<tr>
<td>0011 Tt-13/494-2</td>
<td>35.02.2013</td>
<td>Trgovački sud u Osijeku</td>
</tr>
<tr>
<td>0012 Tt-14/2400-2</td>
<td>06.05.2014</td>
<td>Trgovački sud u Osijeku</td>
</tr>
<tr>
<td>0013 Tt-14/4020-2</td>
<td>28.08.2014</td>
<td>Trgovački sud u Osijeku</td>
</tr>
<tr>
<td>eu /</td>
<td>30.06.2009</td>
<td>elektronički upis</td>
</tr>
<tr>
<td>eu /</td>
<td>30.06.2010</td>
<td>elektronički upis</td>
</tr>
<tr>
<td>eu /</td>
<td>28.06.2011</td>
<td>elektronički upis</td>
</tr>
<tr>
<td>eu /</td>
<td>20.06.2012</td>
<td>elektronički upis</td>
</tr>
<tr>
<td>eu /</td>
<td>20.06.2013</td>
<td>elektronički upis</td>
</tr>
<tr>
<td>eu /</td>
<td>27.06.2014</td>
<td>elektronički upis</td>
</tr>
<tr>
<td>eu /</td>
<td>29.06.2015</td>
<td>elektronički upis</td>
</tr>
<tr>
<td>eu /</td>
<td>29.06.2016</td>
<td>elektronički upis</td>
</tr>
</tbody>
</table>

DU04, 2016-07-26 09:39:34 Stranica: 5
ELABORAT ZAŠTITE OKOLIŠA
SUSTAV ODVODNJE I PROČIŠĆAVANJA OTPADNIH VODA AGLOMERACIJE PITOMAČA
0.2 Suglasnost za obavljanje stručnih poslova zaštite okoliša

REPUBLIKA HRVATSKA
MINISTARSTVO ZAŠTITE OKOLIŠA I PRIRODE
10000 Zagreb, Radnička cesta 80
Tel: 01 / 3717 111 fax: 01 / 3717 149

KLASA: UP/I 351-02/15-08/04
URBROJ: 517-06-2-1-2-15-2
Zagreb, 26. siječnja 2015.

Ministarstvo zaštite okoliša i prirode na temelju odredbe članka 40. stavka 5. i u svezin odredbe članka 271. Zakona o zaštiti okoliša („Narodne novine", brojevi 89/13 i 153/13) te članka 22. stavka 1. Pravilnika o uvjetima za izdavanje suglasnosti pravnim osobama za obavljanje stručnih poslova zaštite okoliša („Narodne novine", broj 57/10), povodom zahtjeva tvrtke HIDROING d.o.o., Tadije Smičklasa 1, Osijek, zastupane po osobi ovlaštenoj za zastupanje sukladno zakonu, radi izdavanja suglasnosti za obavljanje stručnih poslova zaštite okoliša, donosi

RJEŠENJE

I. Tvrtki HIDROING d.o.o., Tadije Smičklasa 1, Osijek, daje se suglasnost za obavljanje stručnih poslova zaštite okoliša:

1. Izrada studija o utjecaju zahvata na okoliš, uključujući i dokumentaciju za provedbu postupka ocjene o potrebi procjene utjecaja zahvata na okoliš te dokumentacije za određivanje sadržaja studije o utjecaju na okoliš;

2. Izrada elaborata o zaštiti okoliša koji se odnose na zahvate za koje nije propisana obveza procjene utjecaja na okoliš.

II. Suglasnost iz točke I. ove izreke prestaje važiti u roku od godine dana od dana stupanja na snagu propisa iz članka 40. stavka 12. Zakona o zaštiti okoliša.

III. Ovo rješenje upisuje se u očevidnik izdanih suglasnosti za obavljanje stručnih poslova zaštite okoliša koji vodi Ministarstvo zaštite okoliša i prirode.

IV. Uz ovo rješenje priloži popis zaposlenika ovlaštenika: voditelja stručnih poslova u zaštiti okoliša i stručnjaka slijedom kojih su ispunjeni propisani uvjeti glede zaposlenih stručnjaka za izdavanje suglasnosti iz točke I. ove izreke.

Obrázloženje

HIDROING d.o.o., sa sjedištem u Osijeku, Tadije Smičklasa 1 (u daljnjem tekstu: ovlaštenik) podnio je 22. siječnja 2015. godine ovom Ministarstvu zahtjev za izdavanje suglasnosti za obavljanje stručnih poslova zaštite okoliša: Izrada studija o utjecaju zahvata na okoliš, uključujući i dokumentaciju za provedbu postupka ocjene o potrebi procjene utjecaja zahvata na okoliš te dokumentacije za određivanje sadržaja studije o utjecaju na okoliš i izrada elaborata o zaštiti okoliša koji se odnose na zahvate za koje nije propisana obveza procjene utjecaja na okoliš.

Ovlaštenik je uz zahtjev za izdavanje suglasnosti priložio odgovarajuće dokaze prema zahtjevima propisanim odredbama članka 5. i 20. Pravilnika o uvjetima za izdavanje
suglasnosti pravnim osobama za obavljanje stručnih poslova zaštite okoliša (u daljnjem tekstu: Pravilnik), koji je donesen temeljem Zakona o zaštiti okoliša („Narodne novine„, broj 110/97), a odgovarajuće se primjenjuje u predmetnom postupku slijedom odredbe članka 271. stavka 2. točke 21. Zakona o zaštiti okoliša („Narodne novine„, broj 80/13 i 153/13) kojom je ostavljen na snazi u dijelu u kojem nije suprotan tom Zakonu.

Ovlaštenik je naveo činjenice i podnio dokaze na podlozi kojih se moglo utvrditi pravo stanje stvari a također i iz razloga jer su sve činjenice bitne za donošenje odluke o zahtjevu ovlaštenika poznate ovom tijelu (ovlaštenik je za iste poslove ovlašten prema ranijе važеm Zakonu o zaštiti okoliša rješenjima ovoga Ministarstva: KLASA: UP/I 351-02/12-08/11, URBROJ: 517-12-2 od 7. veljače 2012. i KLASA: UP/I 351-02/12-08/11, URBROJ: 517-06-2-2-2-4-6 od 3. srpnja 2014.).

U postupku je obavljen uvid u zahtjev i priloženu dokumentaciju te je utvrđeno da su ispunjeni svi propisani uvjeti i da je zahtjev osnovan.

Temeljem svega naprijed navedenoga valjalo je riješiti kao u izreci ovoga rješenja.

UPUTA O PRAVNOМ LIJEKU:
Ovo rješenje je izvršno u upravnom postupku i protiv njega se ne može izjaviti žalba, ali se može pokrenuti upravni spor. Upravni spor pokreće se tužbom Upravnog sudu u Osijeku, Županijska 5, u roku 30 dana od dana dostave ovog rješenja. Tužba se predaje navedenom upravnom sudu neposredno u pismnom obliku, usmeno na zapisnik ili se šalje poštom, odnosno dostavlja elektronički.

Upravna pristojba na zahtjev i ovo rješenje propisno je naplaćena državnim biljezima u ukupnom iznosu od 70,00 kuna prema Tar. br. 1. i 2. Tarife upravnih pristojbi. Zakona o upravnim pristojbama („Narodne novine„, brojevi 8/96, 77/96, 95/97, 131/97, 68/98, 66/99, 145/99, 116/00, 163/03, 17/04, 110/04, 141/04, 150/05, 155/05, 129/06, 117/07, 25/08, 30/09, 20/10, 69/10, 126/11, 112/12, 19/13, 80/13, 40/14, 69/14, 87/14 194/14).

Privitak: Popis zaposlenika kao u točki IV. izreke rješenja.

Dostaviti:
1. HIDROING d.o.o., Tadije Stipića 1, Osijek (R s povratnicom!)
2. Uprava za inspekciju poslove, ovdje
3. Očevidnik, ovdje
4. Spis predmeta, ovdje
Broj projekta: I-1662/16
Voditelj izrade: mr.sc. Antonija Barišić-Lasović, mag. ing. tech. aliment.
Naručitelj: Vodakom d.o.o., Pitomača

ELABORAT ZAŠTITE OKOLIŠA
SUSTAV ODVODNJE I PROĆIŠĆAVANJA OTPADNIH VODA AGLOMERACIJE PITOMAČA

<table>
<thead>
<tr>
<th>STRUČNI POSLOVI ZAŠTITE OKOLIŠA</th>
<th>VODITELJ STRUČNIH POSLOVA</th>
<th>ZAPOSLENI STRUČNJACI</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Izrada elaborata o zaštiti okoliša koji se odnose na zahvate za koje nije propisana oveze procjene utjecaja na okoliš</td>
<td>Voditelj navedeni pod točkom 1.</td>
<td>Stručnjaci navedeni pod točkom 1.</td>
</tr>
</tbody>
</table>
1. UVODNE INFORMACIJE

Predmet ovog Elaborata zaštite okoliša je sustav odvodnje i pročišćavanja otpadnih voda aglomeracije Pitomača. Navedeni zahvat planira se u svrhu postizanja ciljeva Strategije upravljanja vodama u RH (NN 91/08), te ispunjenju obveza proizašlih iz usklađivanja nacionalnog zakonodavstva s pravnom stečevinom EU. Okvirna direktiva o vodama Europske unije (ODV) (Direktiva 2000/60/EC) je ključni dokument u upravljanju vodnim resursima u Europskoj uniji koji uspostavlja pravni okvir zaštite i poboljšanja statusa svih vodenih ekosustava i osigurava dugoročno održivo upravljanje vodnim resursima.

Direktiva se provodi kroz planove upravljanja slivnim područjima, a ima za cilj zaustaviti daljnje uništavanje vodenih cjelina, te povećati i obnoviti stanje vodenih kao i kopnenih ekosustava koje direktno ovise o vodenim ekosustavima. Cilj joj je postizanje dobrog ekološkog i kemijskog stanja svih površinskih voda. Ovaj Elaborat zaštite okoliša sastavni je dio EU projekta za izradu idejnih i glavnih projekata, studije izvedivosti i studije utjecaja na okoliš sustava odvodnje i pročišćavanja otpadnih voda, te aplikacije za sufinanciranje sredstvima EU fondova kroz i stoga mora biti izrađena i sukladno legislativi Europske unije. Sustav javne odvodnje i pročišćavanja vezani su za rekonstrukciju i unaprijeđenja postojećeg sustava odvodnje otpadnih voda, a uključuju i izgradnju kanalizacijskih sustava u nekim prigradskim područjima koja do sada nisu imala izgrađene sustave.

Za obuhvat projekta provedene su procedure kako slijedi:

Ovaj Elaborat zaštite okoliša sustava odvodnje i pročišćavanja otpadnih voda Aglomeracije Pitomača napravljen je obzirom na potrebu dopune Elaborata dijelovima o utjecaju zahvata na stanje vodnih tijela sa stajališta ciljeva zaštite voda i ispunjavanja uvjeta u smislu odstupanja od postizanja ciljeva zaštite voda, te utjecajima klimatskih promjena na projekt kao i utjecajima projekta na klimatske promjene i bioraznolikost. Temeljem Uredbe o procjени utjecaja zahvata na okoliš (NN 61/14) zahvat sustav odvodnje i pročišćavanja voda planiranih aglomeracija - nalazi se u Prilog II, pod točkom 10.4. Postrojenja za obradu otpadnih voda s pripadajućim sustavom odvodnje.
2. PODACI O ZAHVATU I OPIS OBILJEŽJA ZAHVATA

2.1 Postojeće stanje

Na području projekta u užem centru naselja Pitomača djelomično je izvedena kanalizacijska mreža (djelomično mješovitog tipa) koja odvodi otpadne vode do uređaja za pročišćavanje otpadnih voda. Ukupna dužina te kanalizacijske mreže 18.247,00 metara koja se veže na također postojeći UPOV Pitomača kapaciteta 9.000ES. Na sustavu se nalazi jedna crpna stanica i to u Dravskoj ulici – CS1. Uređaj za pročišćavanje otpadnih voda je relativno star jer je izgrađen 80-tih godina te na njemu postoji samo mehanički stupanj pročišćavanja otpadnih voda.

Oborinske vode odvode se otvorenim kanalima ili cestovnim jarcima u najbliže vodotoke. U većini naselja otpadne vode se zbrinjavaju septičkim jamama, koje se nekontrolirano prazne u najbliži odvodni jarak ili u najbliži vodotok. Većina septičkih jama je procjedna, bez nepropusnog dna, tako da se otpadne vode direktno infiltriraju u vodonosne slojeve. Postojeće stanje u pogledu odvodnje i pročišćavanja otpadnih voda na području Općine Pitomača ne zadovoljava u sanitarnom i higijenskom pogledu, te ugrožava podzemne i nadzemne vodne reurse.

Slika 2.1 Prikaz postojeće kanalizacijske mreže u naselju Pitomača
2.2 Opis glavnih obilježja zahvata

Za potrebe analize obuhvata aglomeracije Pitomača, definirana su sva potencijalna naselja koja su mogla ući u obuhvat aglomeracije. To je uključilo sva naselja koja su bila definirana kao dio aglomeracije Pitomača u sklopu Plana provedbe vodno-komunalnih direktiva, ali i druga naselja za koje je ocijenjeno da predstavljaju izgledne kandidate za priključivanje aglomeraciji Pitomača. Nastavno, izvršena je analiza dostupne projektnie dokumentacije kako bi se provjerila mogućnost priključenja svih naselja aglomeraciji Pitomača.

Za potrebe analize obuhvata aglomeracije Pitomača, definirana su sva potencijalna naselja koja su mogla ući u obuhvat aglomeracije. To je uključilo sva naselja koja su bila definirana kao dio pojedinih aglomeracija definitiranih u sklopu Plana provedbe vodno-komunalnih direktiva, ali i druga naselja za koje je ocijenjeno da predstavljaju izgledne kandidate za priključivanje aglomeraciji Pitomača. Nastavno, izvršena je analiza dostupne projektnie dokumentacije kako bi se provjerila mogućnost priključenja svih naselja na području pojedinih aglomeracija.

Detaljnim analizama sustava i naselja u „STUDIJI IZVODLJIVOSTI - Novelacija studijske dokumentacije za „EU projekt sustava odvodnje i pročišćavanja otpadnih voda aglomeracije „Pitomača”“, hidroing d.o.o., svibanj 2016., definirana je aglomeracija, te UPOV.

U Studiji izvodljivosti definirani su razlozi i kriteriji određivanja obuhvata navedenih aglomeracija temeljem propisane metodologije i definiranih kriterija.

U Studiji izvodljivosti analizirano je više varijanti s ciljem definiranja obuhvata aglomeracije Pitomača. Zaključak je da se definira aglomeracija koja uključuje naselja Pitomača, Otrovanec, Dinjevac, Grabrovnica, Kladare i Stari Gradac vršnog ukupnog opterećenja od 9.000 ES.

Tablica 2.1 Konačni obuhvat aglomeracije Pitomača

<table>
<thead>
<tr>
<th>Naselje</th>
<th>Postojeći sustav</th>
<th>Odabrano varijantno rješenje</th>
<th>UPOV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pitomača</td>
<td>ima djelomično</td>
<td>Izgradnja kanalizacijske mreže</td>
<td>Pitomača</td>
</tr>
<tr>
<td>Otrovanec</td>
<td>Nema</td>
<td>Izgradnja kanalizacijske mreže</td>
<td>Pitomača</td>
</tr>
<tr>
<td>Dinjevac</td>
<td>Nema</td>
<td>Izgradnja kanalizacijske mreže</td>
<td>Pitomača</td>
</tr>
<tr>
<td>Grabrovnica</td>
<td>Nema</td>
<td>Izgradnja kanalizacijske mreže</td>
<td>Pitomača</td>
</tr>
<tr>
<td>Kladare</td>
<td>Nema</td>
<td>Izgradnja kanalizacijske mreže</td>
<td>Pitomača</td>
</tr>
<tr>
<td>Stari Gradac</td>
<td>Nema</td>
<td>Izgradnja kanalizacijske mreže</td>
<td>Pitomača</td>
</tr>
</tbody>
</table>

Kao rezultat navedenog, temeljem zahtjeva Direktive o odvodnji i pročišćavanju komunalnih otpadnih voda (DOKOV) aglomeracija Pitomača spada u grupu aglomeracija veličine 2.000 do 10.000 ES. Ispust pročišćenih otpadnih voda aglomeracije je u recipijent u „osjetljivom“ području te se traži sekundarno pročišćavanje otpadnih voda. Na osnovu navedenog, krajnji rok za uspostavljanje sustava odvodnje i pročišćavanja otpadnih voda je kraj 2023. godine te će pročišćavanje biti “sekundarnog” stupnja.
Slika 2.3 Projektirani sustavi odvodnje aglomeracije Pitomača
Nakon ispunjavanja gore navedenih zahtjeva implementacijom mjera u okviru ovog projekta ne postoje druge značajne dugoročne mjere koje će preostati osim održavanja i sustava s ciljem održavanja efikasnosti sustava odvodnje i pročišćavanja otpadnih voda.

Zahvat sustava odvodnje i pročišćavanja otpadnih voda aglomeracije Pitomača podijeljeno je u nekoliko komponenti projekti, čije cjelina su obrađeni zasebnom projektnom dokumentacijom.

U tablici u nastavku prikazane su pojedine komponente sa navedenim zahvatima koje je potrebno poduzeti.

Komponenta A: Sustav odvodnje aglomeracije Pitomača

<table>
<thead>
<tr>
<th>Komponenta</th>
<th>Komponenta A: Sustav odvodnje aglomeracije Pitomača</th>
</tr>
</thead>
</table>
| Ciljevi | - postizanje pokrivenosti aglomeracije Pitomača sustavom javne odvodnje od ~100%
| | - postizanje priključenosti od min. 85% |
| Opravdanje za doprinos EU | Postizanje sukladnosti s odredbama Direktive o odvodnji i pročišćavanju komunalnih otpadnih voda (rok: 31.12.2023.) |
| Planirane fizičke mjere | Izgradnja sustava odvodnje u naseljima Pitomača, Otrovanec, Dinjevac, Grabrovnica, Kladare i Stari Gradac što uključuje:
| | - cca 51.000 m gravitacijskih kolektora
| | - cca 16.000 m tlačnih vodova
| | - 29 crpnih stanica
| | - cca 2.500 priprema za kućne priključke |

Za naselja Pitomača, Otrovanec, Dinjevac, Grabrovnica i Kladare u općini Pitomača izrađena je projektna dokumentacija odvodnje otpadnih voda

- „Glavni projekt izgradnja kanalizacije aglomeracije Pitomača - faza I.“ izrađen od strane tvrtke Prostor d.o.o., rujan 2014.g. na temelju kojeg je u proceduri izdavanje Građevinske dozvole.

Prema navedenom projektu odvodnja otpadnih voda tog dijela Općine Pitomača predviđena je potpunim razdijelnim sustavom odvodnje, odnosno sustavom kojim se posebno prikupljuju sanitarne otpadne vode, a posebno oborinske. Pročišćavanje otpadnih voda naselja Pitomača, Kladare, Dinjevac, Grabrovnica i Otrovanec predviđeno je na zajedničkom, postojećem, uređaju za pročišćavanje otpadnih voda u Pitomači.

Zbog relativno velike udaljenosti pojedinih naselja predmetnog područja, kao i njihove međusobne neovisnosti, predlaže se fazna izgradnja kanalizacijskog sustava na predmetnom području. Radovi bi se izvodili u četiri (4) faze:

Faza 1 – obuhvaća izgradnju kanalizacijske mreže za naselja; zapadni i sjeverni dio naselja Pitomača i Kladare sa spojem na postojeći kolektor, odnosno na postojeći kanalizacijski sustav u Domjanićevoj ulici,

Faza 2 – obuhvaća izgradnju kanalizacijske mreže za naselja Dinjevac i Grabrovnica – naselja se spajaju na postojeći kanalizacijski sustav u Pitomači (Ulica P. Preradovića)

Faza 3 – odnosi se na izgradnju kanalizacijske mreže naselja Otrovanec - naselje se spaja na postojeći kanalizacijski sustav u Vinogradskoj ulici, Pitomača
Faza 4 – obuhvaća izgradnju kanalizacijske mreže za naselja; istočni dio naselja Pitomača, sa spojem na postojeći kanalizacijski sustav u Dravskoj ulici i ulici A. Mihanovića, sjeverno od željeznice pruge.

Za potrebe Studije, preuzet će se hidraulički proračun sustava odvodnje iz navedenog projekta te po potrebi, optimalizirati u ovisnosti od obuhvata aglomeracije.

Za dio naselja Pitomača izrađena je projektna dokumentacija odvodnje otpadnih voda

- „Glavni projekt: sustav odvodnje otpadnih voda Pitomače, kanalizacijska mreža u Vinogradskoj ulici, Dravskoj ulici i ulici Petra krešimira IV.“ izrađen od strane tvrtke Hidroprojekt-ing projektiranje d.o.o, srpanj 2008.g. na temelju kojeg je izdana Potvrda glavnog projekta

Prema navedenom projektu kanalizacijska mreža se dijeli na 3 faze. Projekt „Izgradnja kanalizacije u Dravskoj ulici u Pitomači (faza II)“ obuhvaća izgradnju nove kanalizacijske mreže za pročišćavanje otpadnih kanalizacijskih voda u istočnom dijelu naselja Pitomača. Ovim projektom će se ukupna dužina postojeće kanalizacijske mreže povećat će se za dodatnih 7.700 metara te će se uz jednu postojeću, izgraditi još jedna crpna stanica (CS Dravska I) koja je kapaciteta većeg od 10 l/s.

Za naselje **Stari Gradac** u općini Pitomača izrađena je projektna dokumentacija odvodnje otpadnih voda

- „Glavni projekt izgradnja kanalizacije naselja Stari Gradac“ izrađen od strane tvrtke Prostor d.o.o. iz travanj 2014.g. na temelju kojeg je u proceduri izdavanje Građevinske dozvole.

Prema navedenom projektu odvodnja otpadnih voda tog dijela Općine Pitomača predviđena je potpunim razdijelnim sustavom odvodnje, odnosno sustavom koji se posebno priklapljuju sanitarni otpadni vode, a posebno oborinske. Projektirana kanalizacija spaja se na kanalizaciju aglomeracije Pitomača. Pročišćavanje otpadnih voda naselja Stari Gradac predviđeno je na postojećem uređaju za pročišćavanje otpadnih voda u Pitomači.

Zbog konfiguracije terena, centralni dio naselja je viši od ostatka naselja, gdje je naselje podijeljeno na tri uvjetno samostalne funkcionalne cjeline, predlaže se faza izgradnja kanalizacijskog sustava na predmetnom području. Radovi bi se izvodili u tri (3) faze:

Faza 1 – obuhvaća izgradnju kanalizacijske mreže za zapadni dio naselja (Kanal SG 1.1, Kanal SG 1.2, Kanal SG 1.2.1, Kanal SG 1.3)

Faza 2 – obuhvaća izgradnju kanalizacijske mreže za sjeverni dio naselja (Kanal SG 2.0, Kanal SG 2.1, Kanal SG 2.1.0, CS S. Gradac 1 i Tlačni kanal 3)

Faza 3 – obuhvaća izgradnju kanalizacijske mreže za južni dio naselja (svi preostali kanali i objekti)
Komponenta B: Dogradnja uređaja za pročišćavanje otpadnih voda aglomeracije Pitomača

<table>
<thead>
<tr>
<th>Komponenta</th>
<th>Komponenta B: UPOV Pitomača</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ciljevi</td>
<td>- pročišćavanje otpadnih voda čišće aglomeracije Pitomača</td>
</tr>
<tr>
<td>Opravdanje za doprinos EU</td>
<td>Postizanje sukladnosti s odredbama Direktive o odvodnji i pročišćavanju komunalnih otpadnih voda (rok: 31.12.2023.)</td>
</tr>
<tr>
<td>Planirane fizičke mjere</td>
<td>Projektiranje i dogradnja uređaja za pročišćavanje otpadnih voda Pitomača kapacitet 9.000 ES</td>
</tr>
</tbody>
</table>

UPOV aglomeracije Pitomača je određen s kapacitetom od 9.000 ES, II. stupnja pročišćavanja. Mikrolokacijski gledano, odabrana lokacija se nalazi uz sami recipijent Šušulić (Vir) te na povoljnoj lokaciji u sklopu naselja (dovoljno blizu da ne zahtjeva veće hidrauličke zahtjeve pri transportiranju otpadne vode, te dovoljno daleko da je izdvojena od kućanstava na području). Obzirom na dane ulazne podatke i granične vrijednosti emisija otpadnih voda, ali vodeći i računa o potencijalnim varijantama konačne obrade i zbrinjavanja viška mulja, moguće i dokazane konfiguracije UPOV-a su:

- Uređaji s fiksnim ležajem:
 - Potopljeni rotirajući fiksni ležajevi,
 - Prokapni filtri.

- Sustavi s aktivnim muljem:
 - S kontinuiranim protokom (konvencionalni),
 - Sa šaržnim radom (SBR).

Obzirom da će nadležna vodnokomunalna tvrtka osim UPOV-a Pitomača, primarno upravljati UPOV-om aglomeracije Virovitica, u svrhu jednostavnosti i jednoznačnosti upravljanja, potrebno je uzeti u obzir i odabranu tehnologiju UPOV-a Virovitica.

Analizom dostupne studijske dokumentacije – „Studije izvodljivosti - Projekt poboljšanja vodnokomunalne infrastrukture aglomeracije Virovitica“, izrađen od strane tvrtke Hidroing d.o.o. Osijek iz 2015.g. utvrđeno je kako je za UPOV Virovitica predviđena primjena tehnologije s aktivnim muljem: konvencionalna ili SBR.

Nadležno vodnokomunalno društvo upravlja postojećim UPOV-om Suhopolje II. stupnja pročišćavanja temeljen na SBR tehnologiji. Sukladno navedenom, kao opcije tehnologije pročišćavanja otpadnih voda na UPOV Pitomača se predlaže također usvajanje konvencionalnog ili SBR postupka.

Konvencionalni uređaji s aktivnim muljem svojstveni su po bazenu s fiksnim odjelcima za biološki tretman i taloženje mulja. Zaprema bazena se može podijeliti u više linija te se na taj način može podesiti njegova zapremina kao i drugi faktori te se na taj način može zadovoljiti većina operativnih zahtjeva.
SBR uređaji su svojstveni po biološkom tretmanu i taloženju mulja u jedinstvenom bazenu. Promjenjivi omjer opterećenja/dotoka se mogu tretirati prilagođavanjem nivoa u bazenima i promjenjivim vremenom trajanja ciklusa. SBR uređaji generalno imaju veću fleksibilnost od onih s kontinuiranim protokom. Konfiguracija uređaja omogućava podešavanja više varijabli što u drugu ruku čini rad uređaja kompleksnim.

Varijanta 1 – aktivni mulj – konvencionalni proces

Općenito, proces kontinuiranog toka s aktivnim muljem omogućava potpuno miješanje u stalno ili povremeno aeriranom biološkom reaktoru, gdje se dolazna otpadna voda miješa s aktivnim muljem.

Unutar ovog reakcijskog spremnika, organsko opterećenje, ovisno o konfiguraciji procesa, i hranjive tvari bit će razgrađeno iapsorbirano. Mulj i tekućina će biti odvojeni jedno od drugog u posebnom bazenu za taloženje (sekundarni taložnik), iz kojeg se obrađeni efluent ispušta u recipijent.

Višak mulja, koji je nastao u aeracijskom bazenu kroz rast bakterija, se redovito uklanja iz procesa, kako bi se održala konstantna i stabilna koncentracija mulja te se obrađuje i zbrinjava.

Proces je kontinuirano u radu. Za poboljšano uklanjanje hranjivih tvari, u funkciju se stavlja sustav aeracije koji radi s prekidima kako bi se stvorila sekvenca aeriranih i anoksijnih faza na odgovarajući način.

Varijanta 2 – aktivni mulj – SBR proces

SBR sustav (Sequencing Batch Reactor - sekvencijalni šaržni reaktor) je uređaj sa šaržnim radom, koji osigurava efikasno pročišćavanje u vremenski kontroliranom sustavu. Biološki mehanizmi su identični kao i kod sustav kontinuiranog toka, te je stoga i glavni princip rada baziran na akumuliranju biomase unutar reaktora na odgovarajući način kako bi se omogućila birazgradnja organskog onečišćenja i hranjivih tvari.

Općenito, SBR uređaj se sastoji od najmanje dva ili više bazena, koji su periodično pušteni u rad. Postavke procesa počinju primjenom specijalnog redoslijeda punjenja, reakcije, taloženja mulja i pražnjenja. Putem podešavanja ovog redoslijeda može se manipulirati efikasnošću pročišćavanja te rastom biomase prema određenim potrebama.
Glavne faze svakog reakcijskog ciklusa su:

- Punjenje / miješanje
- Izmjnjivanje aerirane i anoksične faze, miješanje
- Taloženje mulja
- Ispuštanje efluenta / uklanjanje viška mulja
- Mirovanje / priprema novog ciklusa.

Slika 2.5 SBR postupak, generalna tehnološka shema

Usporedba i zaključak

SBR i konvencionalni proces će imati slične koncentracije MLSS-a sve dok su podjednaki iznosi hidrauličkog vremena zadržavanja (HRT) i vremena zadržavanja čvrstih tvari (SRT) za oba procesa. Kao rezultat ovoga, potrebna zapremina bazena za biološki proces u oba sustava je gotovo identična.

SBR je međutim obično konfiguriran u pravokutnim bazenima sa zajedničkim zidovima te je stoga izgrađen na kompaktniji način s manjom potrebnom površinom u odnosu na sustav kontinuiranog protoka s odvojenim sustavom za taloženje mulja.

SBR je stoga kompaktniji te su troškovi građevinskih radova općenito manji u odnosu na sustav kontinuiranog protoka. U SBR sustavu s druge strane svaki bazen mora ispunjavati funkcije punjenja, reakcije, taloženja i ispuštanja. Stoga svaki bazen mora biti potpuno opremljen za svaku od ovih funkcija. Zahtjevi instaliranih kapaciteta difuzora i puhala na SBR sustavu su veći u odnosu na sličan sustav kontinuiranog protoka. Instalirani kapacitet puhala se povećava sa smanjenjem broja reaktora u određenom SBR sustavu. Kao rezultat ovoga investicijski troškovi strojarske i elektro opreme SBR sustava su nešto veći.

Potrošnja el. energije za aeraciju je optrilike ista za slične uvjete i način rada. Sveukupni građevinski troškovi (građevinski/strojarski/elekto) su generalno vrlo slični za obje tehnologije.
Upravljanje muljem

Sukladno zaključcima iz prethodnih poglavlja, vezano na činjenicu da industrijske vode predmetnog područja nisu dio sustava javne odvodnje te se neće pročišćavati na uređaju za pročišćavanje otpadnih voda sa sanitarnim otpadnim vodama aglomeracije, može se konstatirati da će sastav mulja sa UPOV-a Pitomača biti „sličan“ sastavu uobičajenih komunalnih otpadnih voda.

Količine mulja procijenjene su sukladno tehnološkom proračunu uređaja za pročišćavanje otpadnih voda te iznose cca. 181 t godišnje.

Obzirom na predviđenu količinu mulja, makrolokaciju aglomeracije Pitomača te predviđena udruženja dviju vodnokomunalnih tvrtki, kao optimalno tehnološko rješenje odabrana su polja za ozemljavanje mulja.

U fazi provedbe projekta, nadležna vodnokomunalna tvrtka će posjedovati dovoljno iskustva u održavanju polja za ozemljavanje mulja što se može smatrati prednošću ovom tehnološkom rješenju – na dva usporedna EU projekta (EU projekt Virovitica te EU projekt Špišić Bukovica-Gradina-Suhopolje) kao odabrano rješenje zbrinjavanja mulja odabrana su polja za ozemljavanje mulja (lokacija UPOV-a-a Suhopolje).
Slika 2.6 Pregledna situacija UPOV Pitomača
3. PODACI O LOKACIJI I OPIS LOKACIJE ZAHVATA

3.1 Opis stanja okoliša

Lokacija projekta je smještena u Virovitičko-podravskoj županiji i primarno se odnosi na administrativno područje Općine Pitomača.

Općina Pitomača nalazi se u sjeverozapadnom dijelu Virovitičko-podravske županije, na prostoru Bilogorske Podravine. Sa sjeverne strane graniči s Republikom Mađarskom, s istočne strane s općinom Špišić Bukovica, s južne strane s Bjelovarsko-bilogorskom županijom (općina Veliki Grđevac), a sa zapadne s Koprivničko-križevačkom županijom (općine Kloštar Podravski i Sesvete Podravske).

Općina Pitomača je jedna od većih općina u Virovitičko-podravskoj županiji, s površinom od 158,14 km², što predstavlja 7,82 % površine Županije. Broj stanovnika, prema Popisu iz 2011. godine je 10.059, gustoća naseljenosti je 64 st/km².

U općini Pitomača ima dvanaest naselja i to Pitomača, Dinjevac, Grabrovnica, Kladare, Križnica, Mala Črešnjevica, Otrovanec, Sedlarica, Stari Gradac, Starogradački Marof, Turnašica i Velika Črešnjevica. Naselje Pitomača je sjedište općine Pitomača.

Slika 3.1 Pregledna situacija Aglomeracije Pitomača u županiji
3.2 Geološka obilježja

U geološkom pogledu Dravska potolina je produkt dubokih usporedbnih rasjeda u kojima je uvjetovan današnji smjer toka rijeke Drave. Talijone u Dravskoj potolini kvartarne su starosti. Sastoje se u najvećoj mjeri od prapora, eolskih pijesaka i organogeno-barskih sedimenata (barske gline, pijesci, treset). Konačnim formiranjem reljefa i procesima erozije i denudacije nastali su deluvijalno pluvijalni i pluvijalni sedimenti, koji pokrivaju dolinska i nizinska područja Podravine. Tektonsku jedinicu Bilošte izgrađuju isključivo tercijarske naslage. Strukturno-tektonska sklop je formiran na prijelazu iz neogena u kvartar. Specifičnost za ovu tektonsku jedinicu su prevrtnute strukture tercijarnih naslaga uz rub s kristalinskim kompleksom. Cijelo područje općine nalazi se u području maksimalno opaženog intenziteta potresa od 7 stupnjeva MCS skale.

3.3 Hidrološki i hidrogeološki podaci

Ostali vodotoci na predmetnom području su mali brdsko-ravnjačarski vodotoci sa snježno-šumskim režimom tečenja u hladnim dijelu godine. U kišnim periodima pokazuju bujični karakter te s brdskih dijelova sliva donose mnogo nanosa koji se taloži u nizinskim područjima. U nizinskom dijelu sliva ovi vodotoci su regulirani i redovito se održavaju.

Na slivnom području Bistra reguliranim se smatraju vodotoci Vir u dužini 3.480 m, Kopanjek kanal 2.560 m, Josina rijeka 4.030 m, Kladare I 4.200 m. Ukupno je regulirano 14.210 m vodotoka. Branjena područja se nalaze uz vodotok Dravu. Na slivnom području Županijski kanal reguliran je dio vodotoka Lendava u dužini od 4.000 m.

Tok podzemne vode na lokaciji zahvata je pod utjecajem površinskog toka rijeke Drave. Prema njihovim podacima debljina kvartarnog vodonosnika se generalno povećava od sjeverozapada.
prema jugoistoku, tako da na području između Koprivnice i Torčeca (oko 40 km sjeverozapadno od Pitomače), njegova debljina iznosi oko 80 metara. Oko 12 kilometara sjeverno od Pitomače, kod Ferdinandovca debljina vodonosnika iznosi oko 140 metara. Kod Sokolca Podravskog, nedaleko Virovitice (oko 29 km jugoistočno od Pitomače), debljina vodonosnika iznosi oko 177 metara.

3.4 Klimatske karakteristike područja

Prostor Virovitičko-podravske županije pripada geografskom području Podravine, koje jednim svojim dijelom pripada prostoru Središnje Hrvatske, a drugim dijelom prostoru Istočne Hrvatske. Budući da je to prostor koji je na prijelazu prema Istočnohrvatskoj ravnici, to i klimatske osobine pokazuju prijelazni karakter prema svježoj i hladnijoj klimi Središnje Hrvatske. Stoga se klimatske osobine ovog prostora mogu okarakterizirati kao svježa klima kontinentalnog tipa. Prosječna godišnja temperatura iznosi 10-10,7ºC. U godišnjem hodu temperature zraka rastu te u srpnju i kolovozu dosežu maksimum, pa nakon toga opadaju sve do siječnja. Za klimu ovog područja je karakteristično da nema suhog razdoblja tijekom godine i oborine su raspoređene na cijelu godinu. U Tablica 3. 1 prikazani su dostupni podaci mjerenja meteoroloških elemenata na meteorološkoj postaji Virovitica, a preuzeti su iz lovnogosposarskih osnova ovog područja.
Tablica 3.1 Klimatski podaci izmjereni na meteorološkoj postaji Virovitica

<table>
<thead>
<tr>
<th>Klimatski faktor</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prosj. temp. °C</td>
<td>-1,4</td>
<td>1,9</td>
<td>5,8</td>
<td>9,9</td>
<td>14,9</td>
<td>18,5</td>
<td>20,1</td>
<td>19,0</td>
<td>15,6</td>
<td>9,4</td>
<td>6,1</td>
<td>0,3</td>
</tr>
<tr>
<td>Max. temp. °C</td>
<td>15,2</td>
<td>19,4</td>
<td>25,5</td>
<td>26,5</td>
<td>31,9</td>
<td>36,0</td>
<td>39,9</td>
<td>37,8</td>
<td>35,1</td>
<td>28,2</td>
<td>24,2</td>
<td>18,6</td>
</tr>
<tr>
<td>Min. temp. °C</td>
<td>-21,3</td>
<td>-27,5</td>
<td>-19,3</td>
<td>-9,1</td>
<td>-1,2</td>
<td>2,4</td>
<td>5,4</td>
<td>5,5</td>
<td>-0,2</td>
<td>-3,5</td>
<td>-11,9</td>
<td>-7,3</td>
</tr>
<tr>
<td>Sr. oborine (mm)</td>
<td>53</td>
<td>42</td>
<td>45</td>
<td>74</td>
<td>82</td>
<td>83</td>
<td>98</td>
<td>100</td>
<td>57</td>
<td>61</td>
<td>77</td>
<td>67</td>
</tr>
</tbody>
</table>

3.5 Rizici od poplava

Na temelju odredbi iz članaka 110., 111. i 112. Zakona o vodama (Narodne novine, br. 153/09, 63/11, 130/11, 56/13 i 14/14) kojima je u hrvatsko zakonodavstvo transponirana Direktiva 2007/60/EZ Europskog parlamenta i Vijeća od 23. listopada 2007. o procjeni i upravljanju rizicima od poplava, Hrvatske vode za svako vodno područje, a po potrebi i za njegove dijelove izrađuju prethodnu procjenu rizika od poplava, karte opasnosti od poplava i karte rizika od poplava i u konačnici Plan upravljanja rizicima od poplava kao sastavni dio Plana upravljanja vodnim područjima.

Prethodna procjena rizika od poplava obuhvaća:

1. Karte (zemljovide) vodnog područja u odgovarajućem mjerilu, s unesenim granicama vodnih područja, podslivova i po potrebi priobalnih područja s prikazom topografije i korištenja zemljišta;
2. Opis poplava iz prošlosti koje su imale znatnije štetne učinke na zdravlje ljudi, okoliš, kulturnu baštinu i gospodarske djelatnosti i vjerojatnost pojave sličnih događaja u budućnosti, koji bi mogli dovesti do sličnih štetnih posljedica;
3. Procjenu potencijalnih štetnih posljedica budućih poplava za zdravlje ljudi, okoliš, kulturnu baštinu i gospodarske djelatnosti, uzimajući u obzir, što je više moguće, topografske, općenite hidrološke i geomorfološke značajke i položaj vodotoka, uključujući poplavnina područja kao prirodna retencijska područja, učinkovitost postojećih građevina za obranu od poplava, položaj naseljenih područja, položaj industrijskih zona, planove dugoročnog razvoja, te utjecaje klimatskih promjena na pojavu poplava.

Karte opasnosti od poplava (zemljovide) sadrže prikaz mogućnosti razvoja određenih poplavnih scenarija. Karte rizika od poplava sadrže prikaz mogućih štetnih posljedica razvoja scenarija prikazanih na kartama opasnosti od poplava.

Plan upravljanja rizicima od poplava sadrži:

1. Ciljeve za upravljanje rizicima od poplava,
2. Mjere za ostvarenje tih ciljeva, uključujući preventivne mjere, zaštitu, pripravnost, prognozu poplava i sustave za obavještavanje i upozoravanje.
Plan upravljanja rizicima od poplava sastavni je dio Plana upravljanja vodnim područjima.

Za provedbu Direktive 2007/60/EZ Europskog parlamenta i Vijeća od 23. listopada 2007. o procjeni i upravljanju rizicima od poplava u Hrvatskoj, Europska unija je dala stručnu potporu hrvatskim stručnjacima odobrivši IPA 2010 Twinning projekt "Izrada karata opasnosti od poplava i karata rizika od poplava" vrijedan 1,1 milijun eura, kojeg su hrvatski stručnjaci realizirali u suradnji sa stručnjacima iz Kraljevine Nizozemske, Republike Francuske i Republike Austrije. Osnovna svrha tog projekta koji je započeo krajem siječnja 2013. godine i koji je uspješno završen sredinom travnja 2014. godine bila je edukacija stručnog tima u Hrvatskim vodama koji će biti osposobljen za pripremu tehničkih dokumenata za provedbu Direktive o procjeni i upravljanju rizicima od poplava u Hrvatskoj.

U nastavku su dani izvodi iz:

- Karte opasnosti od poplava
- Karte rizika od poplava

Karte opasnosti od poplava

Karte opasnosti od poplava ukazuju na moguće obuhvate tri specifična poplavna scenarija, a izrađene su u mjerilu 1 : 25.000 za ona područja koja su u Prethodnoj procjeni rizika od poplava određena kao područja sa potencijalno značajnim rizicima od poplava. Analize su provedene na ukupno oko 30.000 km2, što je više od polovice državnog kopnenog teritorija. Analizirani su sljedeći poplavni scenariji:

- poplave velike vjerojatnosti pojavljivanja
- poplave srednje vjerojatnosti pojavljivanje (povratno razdoblje 100 godina),
- poplave male vjerojatnosti pojavljivanja uključujući poplave uslijed mogućih rušenja nasipa na većim vodotocima te rušenja visokih brana - umjetne poplave),

za fluvijalne (riječne) poplave, bujične poplave i poplave mora. Jedinstvene poplavne linije za pojedine scenarije određene su kao anvelopne poplavne linije različitih izvora plavljenja. Dubine vode za jedinstvene poplavne linije određene su korištenjem digitalnog modela terena Državne geodetske uprave.

Tehničke i matematičko-modelske analize za potrebe izrade karata opasnosti od poplava odrađene su kroz niz studija i projekata koje Hrvatske vode sustavno izrađuju od stupanja na snagu Direktive 2007/60/EZ Europskog parlamenta i Vijeća od 23. listopada 2007. o procjeni i upravljanju rizicima od poplava, Karte izrađene na temelju navedenih analiza naknadno su verificirane i novelirane s podacima i informacijama o zabilježenim poplavama u posljednje vrijeme. Za dio područja na kojima nisu rađene detaljnije hidrološke i hidrauličke obrade, poplavne linije su utvrđene prema procjenama nadležnih službi Hrvatskih voda.

1 Podaci su preuzeti sa http://korp.voda.hr/
Za izradu karata opasnosti od poplava korištene su topografske podloge Državne geodetske uprave, hidrometeorološke podloge Državnog hidrometeorološkog zavoda i mareografske podloge Hrvatskog hidrografskog instituta.

Karte su objavljene u WebGIS preglednicima koji omogućuju prenošenje odabranih prostornih obuhvata u „pdf“ format i tiskanje.

Karte su izrađene u okviru Plana upravljanja rizicima od poplava sukladno odredbama članaka 111. i 112. Zakona o vodama („Narodne novine“, br. 153/09, 63/11, 130/11, 56/13 i 14/14), i to za tri scenarija plavljenja određena Direktivom 2007/60/EZ Europskog parlamenta i Vijeća od 23. listopada 2007. o procjeni i upravljanju rizicima od poplava, i nisu pogodne za druge namjene. Treba voditi računa da na kartama nisu prikazani svi mogući scenariji plavljenja.

Prema utvrđenoj dinamici izrade i donošenja Plana upravljanja rizicima od poplava, ove karte će se usklađivati s rezultatima javne rasprave i s rezultatima detaljnih hidrološko-hidrauličkih analiza na područjima gdje će u međuvremenu biti rađene, sve do kraja 2015. godine.

Slika 3.2 Karta opasnosti od poplava po vjerojatnosti poplavljivanja
Slika 3.3 Karta opasnosti od poplava za malu vjerojatnost pojavljivanja dubine
Slika 3.4 Karta opasnosti od poplava za srednju vjerojatnost pojavljivanja dubine
Slika 3.5 Karta opasnosti od poplava za veliku vjerojatnost pojavljivanja dubine
Karte rizika od poplava

Karte rizika od poplava prikazuju potencijalne štetne posljedice na područjima koja su prethodno određena kartama opasnosti od poplava za sljedeće poplavne scenarije:

- poplave velike vjerojatnosti pojavljivanja,
- poplave srednje vjerojatnosti pojavljivanje (povratno razdoblje 100 godina),
- poplave male vjerojatnosti pojavljivanja uključujući i poplave uslijed mogućih rušenja nasipa na velikim vodotocima te rušenja visokih brana - umjetne poplave).

Polazeći od odredbi Direktive 2007/60/EZ Europskog parlamenta i Vijeća od 23. listopada 2007. o procjeni i upravljanju rizicima od poplava, na kartama rizika od poplava prikazani su sljedeći sadržaji:

1. Broj ugroženog stanovništva po naseljima (do 100, od 100 do 1.000, više od 1.000) prema popisu stanovništva iz 2011. godine preuzeti od Državnog zavoda za statistiku.
2. Podaci o korištenju zemljišta prema CORINE Land Cover 2006 (naseljena područja, područja gospodarske namjene, intenzivna poljoprivreda, ostala poljoprivreda, šume i niska vegetacija, močvare i oskudna vegetacija, vodene površine) preuzeti od Agencije za zaštitu okoliša.
3. Podaci o infrastrukturi preuzeti od nadležnih institucija i/ili prikupljeni iz javnih izvora podataka, te iz arhive Hrvatskih voda (zračne luke, željeznički kolodvori, riječne i morske luke, autobusni kolodvori, bolnice, škole, dječji vrtići, domovine umirovljenika, vodovodnica, trafostanice, željezničke pruge, nasipi, autoceste, ostale ceste).
4. Podaci o zaštiti okoliša preuzeti od nadležnih institucija i/ili prikupljeni iz arhive Hrvatskih voda, odnosno iz Registra zaštićenih područja (područja zaštite staništa ili vrsta, nacionalni parkovi, vodozaštitna područja, kupališta, IPPC / SEVESO II postrojenja, odlagališta otpada, uređaji za pročišćavanje otpadnih voda).
5. Podaci o kulturnoj baštini preuzeti od nadležnih institucija (UNESCO područja).

Karte su objavljene u WebGIS preglednicima koji omogućuju prenošenje odabranih prostornih obuhvata u „pdf“ format i tiskanje.

Karte su izrađene u okviru Plana upravljanja rizicima od poplava sukladno odredbama članaka 111. i 112. Zakona o vodama („Narodne novine“, br. 153/09, 63/11, 130/11, 56/13 i 14/14), i to za tri scenarija plavljenja određena Direktivom 2007/60/EZ Europskog parlamenta i Vijeća od 23. listopada 2007. o procjeni i upravljanju rizicima od poplava, i nisu pogodne za druge namjene.

Prema utvrđenoj dinamici izrade i donošenja Plana upravljanja rizicima od poplava, karte će se po potrebi usklađivati s rezultatima javne rasprave.

Slika 3.6 Karta rizika od poplava za malu vjerojatnost pojavljivanja
Slika 3.7 Karta rizika od poplava za srednju vjerojatnost pojavljivanja
Slika 3.8 Karta rizika od poplava za veliku vjerojatnost pojavljanja
3.6 Stanje vodnog tijela

Za potrebe Planova upravljanja vodnim područjima, provodi se načelno delineacija i proglašavanje zasebnih vodnih tijela površinskih voda na:

- tekućicama s površinom sliva većom od 10 km²,
- stajaćicama površine veće od 0.5 km²,
- prijelaznim i priobalnim vodama bez obzira na veličinu

Za vrlo mala vodna tijela na lokaciji zahvata koje se zbog veličine, a prema Zakonu o vodama odnosno Okvirnoj direktivi o vodama, ne proglašavaju zasebnim vodnim tijelom primjenjuju se uvjeti zaštite kako slijedi:

- Sve manje vode koje su povezane s vodnim tijelom koje je proglašeno Planom upravljanja vodnim područjima, smatraju se njegovim dijelom i za njih važe isti uvjeti kao i za to veće vodno tijelo.

Za manja vodna tijela koja nisu proglašena Planom upravljanja vodnim područjima i nisu sastavni dio većeg vodnog tijela, važe uvjeti kao za vodno tijelo iste kategorije (tekućica, stajaćica, prijelazna voda ili priobalna voda) najosjetljivijeg ekotipa iz pripadajuće ekoregije.

Prema Planu upravljanja vodnim područjima 2016.-2021. predmetnih zahvata nalazi se na području odnosno u neposrednoj blzini vodnih tijela površinskih voda kako je to prikazano u nastavku (Izvor podataka: Izvadak iz Registra vodnih tijela, Hrvatske vode, 11.10.2016.)

Slika 3.9 Vodna tijela na području zahvata
Vodno tijelo CDRI0002_009, Drava

<table>
<thead>
<tr>
<th>OPCI PODACI VODNOG TIJELA CDRI0002_009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Šifra vodnog tijela: CDRI0002_009</td>
</tr>
<tr>
<td>Naziv vodnog tijela: Drava</td>
</tr>
<tr>
<td>Kategorija vodnog tijela: Tekućica / River</td>
</tr>
<tr>
<td>Ekotip: Nizinske vrlo velike tekućice-donji tok Mure i srednji tok Drave i Save (5B)</td>
</tr>
<tr>
<td>Dužina vodnog tijela: 25.8 km + 7.02 km</td>
</tr>
<tr>
<td>Izmjenjenost: Izmjenjeno (changed/ altered)</td>
</tr>
<tr>
<td>Vodno područje: rijeka Dunav</td>
</tr>
<tr>
<td>Podsliv: rijeka Drave i Dunava</td>
</tr>
<tr>
<td>Ekoregija: Panonska</td>
</tr>
<tr>
<td>Države: Međunarodno (HR, HU)</td>
</tr>
<tr>
<td>Obaveza izvješćivanja: EU, ICPDR</td>
</tr>
<tr>
<td>Tjela podzemne vode: CDGI-21</td>
</tr>
<tr>
<td>Zaštićena područja: HR1000014*, HR1000015*, HR53010002*, HR2001004*, HR5000014*, HR5000015*, HR3493049*, HRCM_41033000* (* dio vodnog tijela)</td>
</tr>
<tr>
<td>Mjerne postaje kakvoće: 29120 (Terezino Polje, Drava)</td>
</tr>
<tr>
<td>25063 (Terezino Polje, Drava)</td>
</tr>
</tbody>
</table>
STANJE VODNOG TIJELA CDR10002_009

<table>
<thead>
<tr>
<th>PARAMETAR</th>
<th>UREDBA NN 73/2013*</th>
<th>ANALIZA OPTEREĆENJA I UTJECAJA</th>
<th>STANJE</th>
<th>2021.</th>
<th>NAKON 2021.</th>
<th>POSTIZANJE CIJEVA OKOLIŠA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kemijsko stanje</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hidromorfološki</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biološki elementi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fizikalno kemijski</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biološki elementi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specifične onečišćujuće</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biološki elementi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Makrozoobentozi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fitoplankton</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Makrofiti</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morfološki</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indeks koristenja</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kemijsko</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klorofenilizos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klorofenilfos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diuoron</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Izoproturon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specifične onečišćujuće</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bakar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cink</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hidroizotomski</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hidromorfološki</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klorofenilizos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klorofenilfos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diuoron</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Izoproturon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NAPOMENA:

Određeno kao izmjenjeno vodno tijelo prema analizi opterećenja i utjecaja - Nepouzdana ocjena hidromorfoloških elemenata zbog nedostatka referentnih uvjeta i klasificacijskog sustava

NEMA OCJENE: Ribe, pH, KPK-Mn, Amonij, Nitriti, Ortofosfati, Pentabromofenileter, C10-13 Kloroalkanovi, Tributylkositrovi

DOBRO STANJE: Alaklor, Antracen, Atrazin, Benzen, Kadmij i njegovi spojevi, Tetraklorugljik, Cikloidski pesticidi, DDT ukupni, para-para-DDT, 1,2-Diklorieten, Diklorametan, Di(2-ethylheksil)ftalat (DEHP), Endosulfan, Fluoranten, Heksahlorbenzeni, Heksahlorbutaditen, Heksaklorcikloheksan, Olovo i njegovi spojevi, Živa i njezini spojevi, Naftalen, Nikal i njegovi spojevi, Nonilfenol, Oktilfenol, Pentaklorbenzen, Pentaklorfenol, Benzo(a)piren, Benzo(b)fluoranten, Benzo(k)fluoranten, Benzo(g,h,i)peril, Ideno(1,2,3-cd)piren, Simazin, Tetrakloretilen, Trikloretilen, Triklorbenzeni (svi izomeri), Triklorbenzen

prema dostupnim podacima
Vodno tijelo CDRN0078_001, Lendava

<table>
<thead>
<tr>
<th>OPĆI PODACI VODNOG TIJELA CDRN0078_001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Šifra vodnog tijela:</td>
</tr>
<tr>
<td>Naziv vodnog tijela:</td>
</tr>
<tr>
<td>Kategorija vodnog tijela:</td>
</tr>
<tr>
<td>Ekotip:</td>
</tr>
<tr>
<td>Dužina vodnog tijela:</td>
</tr>
<tr>
<td>Izmjenjenost:</td>
</tr>
<tr>
<td>Vodno područje:</td>
</tr>
<tr>
<td>Podsliv:</td>
</tr>
<tr>
<td>Ekoregija:</td>
</tr>
<tr>
<td>Države:</td>
</tr>
<tr>
<td>Obaveza izvještavanja:</td>
</tr>
<tr>
<td>Tijela podzemne vode:</td>
</tr>
<tr>
<td>Zaštićena područja:</td>
</tr>
<tr>
<td>Mjerne postaje kakvoće:</td>
</tr>
</tbody>
</table>

* - dio vodnog tijela
<table>
<thead>
<tr>
<th>PARAMETAR</th>
<th>UREDBA</th>
<th>ANALIZA OPTEREĆENJA I UTJECAJA</th>
<th>STANJE</th>
<th>2021.</th>
<th>NAKON 2021.</th>
<th>POSTIZANJE CILJEVA OKOLIŠA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UREDBA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NN 73/2013*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stanje</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ekokološko</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kemijsko</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ekokološko</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biološki elementi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fizikalno kemijski</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specifične onečišćujuće</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hidromorfološki</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biološki elementi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fizikalno kemijski</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specifične onečišćujuće</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hidromorfološki</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hidrološki</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kortinolitet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morfološki</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indeks korištenja</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kemijsko</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klorfenvinfos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klorpiritos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dinuron</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isoproturon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Živa i nijevi spojevi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NAPOMENA:

Određeno kao izmjenjeno vodno tijelo prema analizi opterećenja i utjecaja - Nepouzdana ocjena hidromorfoloških elemenata zbog nedostatka referentnih uvjeta i klasifikacijskog sustava.

DOBRO STANJE: Alaklor, Antracen, Azazin, Benzen, Kadmij i njegovi spojevi, Tetraklonuglik, Ciklodienski pesticidi, DDT ukupni, para-para-DDT, 1,2-Diklorfetan, Diklorometan, D2-ethylheksil diffalat (DEHP), Endosulfan, Heksaklorbenzen, Heksaklorbutadijen, Heksaklorcikloheksan, Olov i njegovi spojevi, Naftalen, Nikal i njegovi spojevi, Nonilfenol, Oktilfenol, Pentaklorbenzen, Pentaklorfenol, Benzo(a)piren, Benzo(b)/fluoranten; Benzo(k)/fluoranten, Benzol(g,h,i)/perilen; Ideno(1,2,3-cd)piren, Simazin, Tetrakloretilen, Trikloretilen, Triklobenzenci (svi izom.), Trikloremtan.

prema dostupnim podacima
Vodno tijelo CDRN0111_001, Kalilo

<table>
<thead>
<tr>
<th>OPĆI PODACI VODNOG TIJELA CDRN0111_001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Šifra vodnog tijela: CDRN0111_001</td>
</tr>
<tr>
<td>Naziv vodnog tijela: Kalilo</td>
</tr>
<tr>
<td>Kategorija vodnog tijela: Tekućica / River</td>
</tr>
<tr>
<td>Ekotip: Nizinske male tekućice s glinovito-pjeskovitom podlogom (2A)</td>
</tr>
<tr>
<td>Dužina vodnog tijela: 11.6 km + 35.6 km</td>
</tr>
<tr>
<td>Izmjenjenost: Prirodno (natural)</td>
</tr>
<tr>
<td>Vodno područje: rijeke Dunav</td>
</tr>
<tr>
<td>Podsliv: rieka Drave i Dunava</td>
</tr>
<tr>
<td>Ekoregija: Panonska</td>
</tr>
<tr>
<td>Države: Nacionalno (HR)</td>
</tr>
<tr>
<td>Obaveza izvješćivanja: EU</td>
</tr>
<tr>
<td>Tjela podzemne vode: CDGI-21</td>
</tr>
<tr>
<td>Zaštićena područja: HR1000008, HR1000014*, HR2001004*, HR5000014*, HR3493049*, HRCM_41033000* (*) - dio vodnog tijela)</td>
</tr>
<tr>
<td>Mjerne postaje kakvoće: 21076 (istočno od Pitomače, Pitomača)</td>
</tr>
</tbody>
</table>

![Map of the river Kalilo](image-url)
<table>
<thead>
<tr>
<th>PARAMETAR</th>
<th>UREDBA</th>
<th>ANALIZA OPTEREĆENJA I UTJEČAJA</th>
<th>STANJE</th>
<th>2021.</th>
<th>NAKON 2021.</th>
<th>POSTIZANJE CIJEVA OKOLIŠA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stanje:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ekologosko</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kemijsko</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biološki elementi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fizikalno kemijsko</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specifične onečišćujuće</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hidromorfološki</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biološki elementi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Makrofiti</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Makrozooobentos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fizikalno kemijsko</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ukupni</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specifične onečišćujuće</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>arsen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bakar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cink</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>krom</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>floridi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>adsorbilni organski halogeni</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>polikloriranni bifenili</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hidromorfološki</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hidrološki</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kontinuitet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morfološki</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indeks korištenja</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kemijsko</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antracen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klorfenvinfos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klorpirifos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diuron</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoranten</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Izoproturon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olovo i njegovi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Živa i njezini</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nikal i njegovi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NAPOMENA:

NEMA OCJENE: Fitoplankton, Ribe, pH, KPK-Mn, Amonij, Nitriti, Ortofosfati, Pentabromdifilenileter, C10-13 Kloroalkani, Tributilklorostriphenyloksid, Trifluralin

DOBRO STANJE: Alaklor, Atrazin, Benzenc, Kadrijin i njegovi spojevi, Tetrakloruglik, Cikloideni pesticidi, DDT ukupni, para-para-DDT, 1,2-Dikloretan, Diklorometan, Di(2-ethylheksil)latat (DEHP), Endosulfan, Heksaklorbenzen, Heksaklorbutadien, Heksaklorcikloheksan, Naftaleni, Nonilfenol, Octilfenol, Pentaalibenzen, Pentaalklofenol, Benzo(a)piren, Benzo(b)fluoranten, Benzo(j)fluoranten, Benzo(g,h,i)perilen, Idenol(1,2,3-cd)perilen, Tetrakorellen, Trikorellen, Triklorbenzeni (svi izomeri), Triklorometan

prema dostupnim podacima
Stanje tijela podzemne vode CDGI_21 – LEGRAD – SLATINA

Predmetni zahvat se nalazi na području tijela podzemne vode – Legrad – Slatina. U nastavku su dani raspoloživi podaci o predmetnom vodom tijelu.

<table>
<thead>
<tr>
<th>Stanje</th>
<th>Procjena stanja</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kemijsko stanje</td>
<td>dobro</td>
</tr>
<tr>
<td>Količinsko stanje</td>
<td>dobro</td>
</tr>
<tr>
<td>Ukupno stanje</td>
<td>dobro</td>
</tr>
</tbody>
</table>

Procjena rizika za kemijsko stanje podzemnih voda

<table>
<thead>
<tr>
<th>Kod TPV</th>
<th>Naziv TPV</th>
<th>Rizik za nepostizanje cilja „sprječavanje pogoršanja stanja tijela podzemnih voda“</th>
<th>Rizik za nepostizanje cilja „postići dobro stanje podzemnih voda (kemijsko)“</th>
<th>Ukupni rizik</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDGI_21</td>
<td>Legrad - Slatina</td>
<td>** u riziku**</td>
<td>** u riziku**</td>
<td>** u riziku**</td>
</tr>
</tbody>
</table>

* test nije proveden radi nedostatka podataka
*** test se ne provodi jer se radi o neproduktivnim vodonosnicima

Procjena rizika za količinsko stanje podzemnih voda

<table>
<thead>
<tr>
<th>Kod TPV</th>
<th>Naziv TPV</th>
<th>Test vodne bilance</th>
<th>Test Prodor slane vode ili drugih prostora loše kakvoće</th>
<th>Test Površinska voda</th>
<th>Test GDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDGI_21</td>
<td>Legrad - Slatina</td>
<td>** visoka**</td>
<td>** visoka**</td>
<td>** visoka**</td>
<td>** visoka**</td>
</tr>
</tbody>
</table>

* test nije proveden radi nedostatka podataka
** test nije proveden radi nemogućnosti proveđbe procjene trenda
*** test se ne provodi jer ne postoji evidentirani utjecaj crpljenja podzemne vode
3.7 Zone sanitarne zaštite

Prema podacima iz Plan upravljanja vodnim Područjima (Hrvatske Vode, Zagreb, lipanj 2013.) sustav odvodnje aglomeracije Pitomača nalazi se na području III Zone sanitarne zaštite izvorišta Pitomača, te u neposrednoj blizini izvorišta Pitomača (I Zone sanitarne zaštite) i IIIIB Zone sanitarne zaštite izvorišta Bikana.

Slika 3.10 Zone sanitarne zaštite na području predmetnog zahvata

Prema Pravilniku o uvjetima za utvrđivanje zona sanitarne zaštite izvorišta (NN 66/11 i 47/13):
- u I. zoni sanitarne zaštite izvorišta sa zahvaćanjem voda iz vodonosnika s međuzrnskom poroznosti zabranjuju se sve aktivnosti osim onih koje su vezane za zahvaćanje, kondiciranje i transport vode u vodoopskrbni sustav.
- u III. zoni sanitarne zaštite izvorišta sa zahvaćanjem voda iz vodonosnika s međuzrnskom poroznosti zabranjuje se:
 - ispuštanje nepročišćenih otpadnih voda,
 - skladištenje i odlaganje otpada, gradnja odlagališta otpada osim sanacija postojećeg u cilju njegovog zatvaranja, građevina za zbrinjavanje otpada uključujući spalionice otpada te postrojenja za obradu, oporabu i zbrinjavanje opasnog otpada,
3.8 Zaštićena područja

3.8.1 Zaštićena područja prema Zakonu o zaštiti prirode

IUCN (International Union for Conservation of Nature - Međunarodna unija za očuvanje prirode) definira zaštićeno područje kao „Jasno definirano područje koje je priznato sa svrhom i kojim se upravlja s ciljem trajnog očuvanja cjelokupne prirode, usluga ekosustava koje ono osigurava te pripadajućih kulturnih vrijednosti, na zakonski ili drugi učinkoviti način.“

Ovakva je definicija zaštićenog područja prenesena i u Zakon o zaštiti prirode Republike Hrvatske (NN 80/13) prema kojem je zaštićeno područje "geografski jasno određen prostor koji je namijenjen zaštititi prirodne resurse i kojim se upravlja radi dugoročnog očuvanja prirode i pratećih usluga ekološkog sustava".

Prema Upisniku zaštićenih područja predmetni sustav odvodnje nalazi se u neposrednoj blizini zaštićenih područja. Najблиže zaštićeno područje je Mura-Drava (Regionalni park) koje se nalazi cca. 200 m od zahvata, dok se područja Širinski otok, Jelkuš i Križnica zaštićena u kategoriji značajnog krajobraza nalaze na udaljenosti od cca. 2700 m od predmetnog zahvata.
Slika 2.12. Zaštićena područja prema Zakonu o zaštiti prirode (Izvor: Državni zavod za zaštitu)

Regionalni parka Mura – Drava

Čitav tok rijeke Mure i Drave je trajno zaštićen u kategoriji regionalnog parka. Regionalni park je prostorno prirodno ili dijelom kultivirano područje kopna i/ili mora s ekološkim obilježjima međunarodne, nacionalne ili područne važnosti i krajobraznim vrijednostima karakterističnim za područje na kojem se nalazi. Regionalni parka Mura – Drava proglašen je Uredbom o proglašenju Regionalnoga parka Mura – Drava (NN 22/11). Ovo zaštićeno područje proteže se kroz pet županija (Međimurska, Varaždinska, Koprivničko-križevačka, Virovitičko-podravska i Osječko-baranjska županija) te pokriva 87 680,52 ha površine, a upravljanje Parkom će se obavljati putem koordinacije postojećih županijskih javnih ustanova za upravljanje zaštićenim prirodnim vrijednostima.

Svrha zaštite je očuvanje prirodnih tipova staništa ugroženih na državnoj i europskoj razini, svih svojti koje na njima obitavaju, očuvanje izuzetnih krajobraznih vrijednosti, geološke baštine te kulturno-tradicijne baštine. S obzirom na utjecaj kontinuirane ljudske aktivnosti na očuvanje prostora, ova kategorija zaštite je adekvatna jer dopušta gospodarske aktivnosti, a istovremeno otvara nove perspektivne održivog razvoja, vezane uz ekološku poljoprivredu i ekoturizam.
Rezervat biosfere Dunav-Drava-Mura

Rezervati biosfere su područja kopnenih i morskih ekoloških sustava koja promoviraju rješenja usklađena s ciljevima očuvanja biološke raznolikosti i održivim razvojem. Rezervati biosfere su međunarodno priznati oblik zaštite, nominirani od nacionalnih vlada i ostaju pod suverenom nadležnošću država u kojima se nalaze. Rezervati biosfere su živi laboratoriji za ispitivanje i demonstraciju cjelovitog upravljanja zemljištem, vodama i biološkom raznolikošću. Svi rezervati biosfere čine Svjetsku mrežu rezervata biosfere, unutar koje se potiče razmjena informacija i iskustava.

Predloženi rezervat biosfere proteže se duž rijeka Mure, Drave i Dunava te prolazi kroz šest hrvatskih županija: Međimursku, Varaždinsku, Koprivničko-križevačku, Virovitičko-podravsku, Osječko-baranjsku i Vukovarsko-srijemsku.
Rezervat biosfere također prati dijelove hrvatske granice sa Slovenijom, Mađarskom i Srbijom.

Slika 3.12. Rezervat biosfere Mura-Drava-Dunav (izvor: www.dzzp.hr)

Međunarodno zaštićena područja u Republici Hrvatskoj

Zahvaljujući svojoj iznimnoj vrijednosti i očuvanosti neka područja Republike Hrvatske prepoznata su i kao međunarodno vrijedna područja.
3.8.2 Ekološka mreža – Natura 2000

Ekološka mreža Republike Hrvatske, proglašena je Uredbom o ekološkoj mreži (NN 124/2013), te predstavlja područja ekološke mreže Europske unije Natura 2000.

Ekološku mrežu RH (mrežu Natura 2000) prema članku 6. Uredbe o ekološkoj mreži (NN 124/2013) čine područja očuvanja značajna za ptice - POP (područja značajna za očuvanje i ostvarivanje povoljnog stanja divljih vrsta ptica od interesa za Europsku uniju, kao i njihovih staništa, te područja značajna za očuvanje migratornih vrsta ptica, a osobito močvarna područja od međunarodne važnosti) i područja očuvanja značajna za vrste i stanišne tipove - POVS (područja značajna za očuvanje i ostvarivanje povoljnog stanja drugih divljih vrsta i njihovih staništa, kao i prirodnih stanišnih tipova od interesa za Europsku uniju).

Ekološka mreža Republike Hrvatske obuhvaća 36,67% kopnenog teritorija i 16,39% obalnog mora, a sastoji se od 571 poligonskog Područja očuvanja značajnih za vrste i stanišne tipove (POVS), 171 točkastih Područja očuvanja značajnih za vrste i stanišne tipove (najvećim dijelom špiljski objekti) (POVS) te 38 poligonskih Područja očuvanja značajnih za ptice (POP).

Na području naselja Stari Gradac predmetni zahvata zalazi u područje ekološke mreže Natura 2000:
- područja očuvanja značajna za vrste i stanišne tipove
 o HR2001004 Stari Gradac - Lendava
Područje zahvata se također nalazi u neposrednoj blizini slijedećih područja ekološke mreže Natura 2000:
- područja očuvanja značajna za ptice
 o HR1000008 Bilogora i Kalničko gorje (1700 m od zahvata)
 o HR1000014 Gornji tok Drave (od Donje Dubrave do Terezinog polja) (cca. 100 m od zahvata)
- područja očuvanja značajna za vrste i stanišne tipove
 o HR2001005 Starogradački Marof (1400 m od zahvata)
 o HR5000014 Gornji tok Drave (od Donje Dubrave do Terezinog polja) (cca. 100 m od zahvата)

U nastavku je dan grafički prilog na kojem se vidi prostorni raspored područja ekološke mreže u odnosu na obuhvat zahvata.

Slika 3.14 Područja ekološka mreže – Natura 2000

HR2001004 Stari Gradac - Lendava
Identifikacijski broj područja	**Naziv područja**	**Kategorija za ciljnu vrstu/stanišni tip**	**Hrvatski naziv vrste/hrvatski naziv staništa**	**Znanstveni naziv vrste/Šifra stanišnog tipa**
HR2001004 | Stari Gradac - Lendava | 1 | crnka | Umbra krameri

Kategorija za ciljnu vrstu/stanišni tip: 1=međunarodno značajna vrsta/stanišni tip za koje su područja izdvojena temeljem članka 4. stavka 1. Direktive 92/43/EEZ

Elaborata Zahtjeva za prethodnu ocjenu utjecaja zahvata za ekološku mrežu, nadležno tijelo Virovitičko-podravska županija, Upravni odjel za prostorno uređenje, graditeljstvo, komunalne poslove i zaštitu okoliša u skladu s očitovanjem Državnog zavoda za zaštitu prirode (Zagreb, 16. srpanj 2012., KLASA 612-07/12-29/113; URBROJ 366-07-03-12-02.) izdalo je Potvrdu o prihvatljivosti planiranog zahvata za ekološku mrežu (Zagreb, 31. srpanj 2012., KLASA 612-07/12-01/25; URBROJ 2189/1-08/1-12-04), te utvrdilo da nije potrebno provesti Glavnu ocjenu zahvata.

3.8.3 **Nacionalna klasifikacija staništa**

Prema članku 52. st. 4. Zakona o zaštiti prirode: "Stanišni tipovi se dokumentiraju kartom staništa..." (Narodne novine 80/13).

U cilju osiguravanja Karte staništa kao obvezne podloge prilikom izrade dokumenata prostornog planiranja i planova gospodarenja prirodnim dobrima, Ministarstvo zaštitu okoliša i prostornog uređenja naručilo je 2002. godine izradu GIS baze podataka o rasprostranjenosti stanišnih tipova na teritoriju Hrvatske - kroz projekt Kartiranje staništa.

Karta staništa je GIS-baza podataka o rasprostranjenosti pojedinih stanišnih tipova na području Hrvatske. Kartografski prikaz je razlučivosti mjerila 1: 100 000, a minimalna jedinica kartiranja iznosi 9 ha.

Klasifikacija stanišnih tipova razvija se u Europi već dvadesetak godina, a intenzivan rad na ovoj problematiki započeo je upravo za potrebe donošenja propisa u zaštiti prirode. Četvrta revidirana verzija Nacionalne klasifikacije staništa-a objavljena je 2014. godine u Pravilniku o popisu stanišnih tipova, karti staništa te ugroženim i rijetkim stanišnim tipovima (Narodne novine 88/14).

Prema Pravilniku o popisu stanišnih tipova, karti staništa te ugroženim i rijetkim stanišnim tipovima (NN 88/14) i Karti staništa RH predmetni pretežito se nalazi na području gradskih ili seoskih površina odnosno povremeno na području obrađivanih ili šumskih staništa. U nastavku je dan opis istih.

A.4.1. / E.2.1. Tršćaci, rogozici, visoki šiljevi i visoki šaševi / Poplavne šume crne johe i poljskog jasena

Zajednice tršćaka, rogozika, visokih šiljeva i visokih šaševa (Razred PHRAGMITO-MAGNOCARICETEA Klika in Klika et Novak 1941) – Zajednice rubova jezera, rijeka, potoka, eutrofnih bara i močvara, ali i plitkih poplavnih površina ili površina s visokom razinom donje (podzemne) vode u kojima prevladavaju močvarne, visoke jednosupnice i dvosupnice, uglavnom helofiti.
Poplavne šume crne johe i poljskog jasena (Sveza Alnion incanae Pawlowski et al. 1928 i Alnion glutinosae Malcuit 1929) – Poplavne šume srednjoeuropskih i sjevernopirinejskih vodenih tokova nižih položaja na lima koja su periodično plavljenja tijekom godišnjeg visokog vodostaja rijeka, ali su inače dobro ocijeđena i prozračna u vrijeme niskog vodostaja.

C.2.2. Vlažne livade Srednje Europe

E.3.1. Mješovite hrastovo-grabove i čiste grabove šume

Mješovite hrastovo-grabove i čiste grabove šume (Sveza Erythronio-Carpinion (Horvat 1958) Marinček in Mucina et al. 1993 i sveza Carpinion betuli Issler 1931) – Pripadaju redu FAGETALIA SYLVATICAE Pawl. in Pawl. et al. 1928. Mezofilne i neutrofiline šume planarnog i bežuljkastog (kolinog) područja, redovno izvan dohvata poplavnih voda, u kojima u gornjoj šumskoj etaži dominiraju lužnjak ili kitnjak, a u podstojnoj etaži obični grab (koji u degradacijskim stadijima može biti i dominantna vrsta drveća). Ove šume čine visinski prijelaz između nizinskih poplavnih šuma i brdskih bukovih šuma.

I.2.1. Mozaici kultiviranih površina

Mozaici kultiviranih površina – Mozaici različitih kultura na malim parcelama, u prostornoj izmjeni s elementima seoskih naselja i/ili prirodnih i poluprirodnih vegetacija. Ovaj se tip koristi ukoliko potrebna prostorna detaljnost i svrha istraživanja ne zahtijeva razlučivanje pojedinih specifičnih elemenata koji sačinjavaju mozaik. Sukladno tome, daljnja raščlamba unutar ovoga tipa prati različite tipove mozaika prema zastupljenosti pojedinih sastavnih elemenata.

I.3.1. Intenzivno obrađivane oranice na komasiranim površinama

Intenzivno obrađivane oranice na komasiranim površinama – Otkrivenje homogene parcele većih površina s intenzivnom obradom (višestruka obrada tla, gnojidba, biocidi, i dr.) s ciljem masovne proizvodnje ratarskih jednogodišnjih i dvogodišnjih kultura. Često je prisustvo hidromelioracijske mreže, koja obično prati među između parcela.

J.1.1. Aktivna seoska područja

Aktivna seoska područja - Seoska područja na kojima se održao seoski način života. Definicija tipa na ovoj razini podrazumijeva prostorni kompleks.

J.2.1. Gradsko jezgre

Gradsko jezgre - Vrlo gust, većinom zatvoreni tip izgradnje gradskih središta. Zgrade su većinom višekatnice s vrlo velikim udjelom trgovina, centralnim ustanovama gospodarstva i uprave, s podzemnim i nadzemnim garažama, parkiralištima i s vrlo malim udjelom zelenih površina (stupanj površinske nepropusnosti je 80-100 %). Često su prisutne i povijesne gradsko jezgre sa starom arhitekturom, vrlo često unutar zidina i utvrda ili njihovih ostataka. Definicija tipa na ovoj razini podrazumijeva prostorni kompleks.
J.2.2. Gradske stambene površine

Gradske stambene površine - Gradske površine za stanovanje koje uključuju i stambene blokove i privatne kuće. Definicija tipa na ovoj razini podrazumijeva prostorni kompleks u kojemu se izmjenjuju izgrađene i kultivirane (najčešće neproizvodne) zelene površine.

Slika 3.15 Stanišni tipovi na širem području zahvata
3.9 Kulturno povijesna baština

Na prostoru Općine nalazi se dvanaest većih sela. Manji broj sela ima očuvane elemente izvornih struktura. Uslijed parcelacije i dugotrajne degradacije većina tih sela izgubila su ruralni karakter. Daljnji tretman sadrži slijedeće principe zaštite: poštivanje glavnih komunikacijskih pravaca, kvalitetno i promišljeno propisivanje uvjeta za izgradnju, čuvanje u izvornom izgledu i funkciji povijesnih zgrada-škola, općina, vatrogasnih domova, crkvi, župnih stanova, kapela i poklonaca, i zgrada građenih u duhu tradicijskog graditeljstva.

Prema Zakonu o zaštiti i očuvanju kulturnih dobara (NN 69/99) i podacima Konzervatorskog odjela u Požegi, na području općine Pitomača registrirani i evidentirani spomenici kulture prikazani su u slijedećoj tablici.

Tablica 3. 2 Graditeljska baština

<table>
<thead>
<tr>
<th>r.b.</th>
<th>Mjesto</th>
<th>Naziv spomenika</th>
<th>registriran</th>
<th>evidentiran</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Dinjevac</td>
<td>Kapela sv. Cirila i Metoda</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stara škola iz 19. stoljeća</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>2.</td>
<td>Grabrovnica</td>
<td>Kapela sv. Florijana</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zgrada stare škole</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rodna kuća Petra Preradovića</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Kladare</td>
<td>Kapela Uznesenja Marijina</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stara škola iz 19. stoljeća</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Mala Črešnjevica</td>
<td>Parohijska crkva 318 Blagonosnih otaca</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Crkva sv. Martina)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>cijeli brijeg je arheološki lokalitet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Otrovanec</td>
<td>Kapela sv. Jelene</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stara škola iz 19. stoljeća</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Pitomača</td>
<td>Župna crkva sv. Vida</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Župni dvor iz 18 stoljeća</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Željeznička postaja sa početka stoljeća</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Stari Gradac</td>
<td>Župna crkva sv. Petra Apostola</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arheološki lokalitet «Gradac»</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Turnašica</td>
<td>Župna crkva sv. Trojstva</td>
<td>554</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Sediarica</td>
<td>Grobljanska kapela sv. Petra i Pavla</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Križnica</td>
<td>Stari majur, konjušnice i staje</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Izvor podataka: Prostorni plan uređenja općine Pitomača, Konzervatorski odjel, Požega
3.10 Prostorno – planska i ostala planska dokumentacija

Planirani zahvat sustava odvodnje s područja aglomeracije Pitomača u sukladnosti su s relevantnim dokumentima prostornog uređenja.

<table>
<thead>
<tr>
<th>Br</th>
<th>Naziv</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Prostorni plan Virovitičko-podravske županije (Službeni glasnik" Virovitičko – podravske županije broj broj 7A/00., 1/04., 5/07., 1/10., 2/12., 4/12, 2/13., 3/13)</td>
</tr>
<tr>
<td>2</td>
<td>Prostorni plan uređenja općine Pitomača (Službene novine općine Pitomača 3/03, 1/09, 7/13, 9/13 i 5/15)</td>
</tr>
<tr>
<td>3.</td>
<td>Urbanistički plan uređenja dijela naselja Pitomača (Službene novine općine Pitomača 1/10)</td>
</tr>
</tbody>
</table>

Prostorni plan Virovitičko-podravske županije (Službeni glasnik" Virovitičko – podravske županije broj broj 7A/00., 1/04., 5/07., 1/10., 2/12., 4/12, 2/13., 3/13)

6.4. Vodnogospodarski sustav, 6.4.1. Korištenje voda

Članak 104.

U PPUO/G za vodonosnik propisuju se slijedeće mjere zaštite:
- u poljoprivrednoj proizvodnji uvesti kontrolu nad upotrebom količina i vrsta zaštitnih sredstava, te riješiti zbrinjavanje otpada i otpadnih voda na farmama
- za naselja, a prioritetno za naselja i infrastrukturu koja se nalazi na vodonosniku, riješiti zbrinjavanje otpada i odvodnju otpadnih voda, a za naselja koja neće moći biti uključena u sustav odvodnje obvezna je izrada trodijelnih nepropusnih septičkih jama
- za vodotoke (recipijente otpadnih voda) organizirati sustavno praćenje kvalitete vode i stanja zaštite

6.4.3. Zaštita voda od zagađivanja

Članak 113.

U svim naseljima na području Županije nužno je definirati i planirati sustav odvodnje.

U PPUO/G riješiti odvodnju naselja koja se nalaze na zaštitnim zonama vodocrpilišta i na području cijelog vodonosnika. Riješiti odvodnju i zbrinjavanje otpadnih voda gospodarskih subjekata unutar i izvan građevinskog područja, a posebice farmi na području vodonosnika.

Članak 114.

Otpadne vode obvezno treba prije upuštanja u recipijente tretirati preko pročistača otpadnih voda. Za naselja odnosno objekte koji nemaju izgrađen sustav odvodnje, do njegove izgradnje dovoljava se izgradnja trodijelnih nepropusnih septičkih jama. Industrijske i ostale građevine sa značajnijim zagađivanjem korištenih voda koje nisu obuhvaćene sustavima za odvodnju i pročišćavanje voda naselja moraju izgraditi vlastite sustave odvodnje i uređaje za pročišćavanje.
Za sve zagađene otpadne vode koje ne odgovaraju uvjetima za upuštanje u odvodni sustav prije priključka na odvodni sustav moraju se i zgraditi uređaji za pročišćavanje.

Prostorni plan uređenja općine Pitomača (Službene novine općine Pitomača 3/03, 1/09, 7/13, 9/13 i 5/15)

2.3.1. Infrastrukturne građevine

3. Komunalne građevine

- građevine za korištenje voda (vodoopskrbni sustavi i vodozahvati)

- građevine za zaštitu voda (sustavi odvodnje otpadnih voda)

5.9.3 Površine za odvodnju

Članak 193.

Na području cijelog vodonosnika i u zaštitnim zonama vodocrplišta odvodnj i zbrinjavanje otpadnih voda unutar i izvan građevinskog područja potrebno je riješiti zatvorenim sistemom odvodnje.

Sustav odvodnje i pročišćavanja otpadnih voda određen je načelno na kartografskom prikazu 2. «Infrastrukturni sustavi», a točan položaj odredit će se prema Studiji zaštite voda Virovitičko-podravske županije i projektnoj dokumentaciji.

Članak 195.

Za naselja koja nisu uključena u sustave odvodnje, do njihovog uključenja dozvoljava se upuštanje otpadnih voda u trodijelne nepropusne septičke jame, koje se moraju prazniti na određenim mjestima (pročistač otpadnih voda), gdje će biti podvrgnute predtretmanu, kako bi se postigla određena kvaliteta za upuštanje u konačni recipijent.

Članak 196.

Za recipijente otpadnih voda obavezno sustavno pratiti kvalitetu vode i održavati je na propisanoj razini.
Slika 3.16 Izvod iz Prostornog plana općine Pitomača (2.B Vodnogospodarski sustav)
4. OPIS MOGUĆIH ZNAČAJNIH UTJECAJA ZAHVATA NA OKOLIŠ

4.1 Mogući utjecaji na okoliš tijekom građenja i korištenja zahvata

Najznačajniji utjecaji koji proizlaze kao posljedica izvođenja zahvata na sustavu odvodnje su upravi oni koji nastaju tijekom izgradnje zahvata. Mogući utjecaji mogu se podijeliti prema sastavnicama okoliša.

4.1.1 Vode i stanje vodnog tijela

Mogući utjecaji na okoliš tijekom građenja zahvata

Generalno navedeni zahvat sustava odvodnje i pročišćavanja je pozitivan za površinske vode, no manje značajni negativni utjecaji na vrijeme pripreme i izvođenja zahvata je moguć uslijed nepravilnog rada i nepridržavanja mjera zaštite propisanih u projektu organizacije na gradilištu, uslijed kvara na transportnim vozilima i građevinskoj mehanizaciji, te curenja goriva i/ili maziva, te uslijed radova na ispustu u recipijent kada može doći do ispiranja iskopanog zemljanog materijala u korito kanala „Vir” i mogućeg zatrpavanje korita ili smanjivanje proticajnog profila.

Značajni generatori kemijskog i fizikalno-chemijskog onečišćenja voda je nekontrolirano ispuštanje otpadnih voda kućanstava bez priključka na sustav javne odvodnje (ruralna područja). Izgradnja sustava odvodnje otpadnih voda je aktivnost programa mjera kontrole i smanjenja onečišćenja voda komunalnim otpadnim vodama predviđena Planom upravljanja vodnim područjima, čime će se zbrinuti otpadne vode naljela.

Značajni generatori kemijskog i fizikalno-chemijskog onečišćenja voda je nekontrolirano ispuštanje otpadnih voda kućanstava bez priključka na sustav javne odvodnje (ruralna područja). Izgradnja sustava odvodnje otpadnih voda je aktivnost programa mjera kontrole i smanjenja onečišćenja voda komunalnim otpadnim vodama predviđena Planom upravljanja vodnim područjima, čime će se zbrinuti otpadne vode naselja.

Primarni recipijent UPOV-a „Pitomača” izvan je zona sanitarne zaštite predmetnog izvorišta tj. neće biti ispuštanja u području vodozaštitnih zona. Manje značajan negativan utjecaj tijekom izvođenja radova može se očekivati uslijed eventualnih onečišćenja površine tla opasnim tekućinama (strojna ulja, maziva, goriva, rashladne tekućine, sanitarne otpadne tvari, te druge anorganske tvari) koje mogu procuriti, te onečistiti podzemne vode u neposrednoj podlozi.

Vodno tijelo Kalilo CDRN0111_001 - Kalilo je ocijenjeno u ukupnom stanju kao „vrlo loše“ prema ekološkom i „nije dobro“ prema kemijskom stanju. Primarni zahvat u sustavu odvodnje i pročišćavanja otpadnih voda aglomeracije Pitomača polazi od pretpostavke da se izgradnjom i dogradnjom sustava za prikupljanje i pročišćavanje komunalnih otpadnih voda prema Planu upravljanja vodnim područjima i programima poboljša stanje vodnog tijela kako u ekološkom tako i u kemijskom stanju, te na taj način postignu zadani ciljevi okoliša.
Program mjera zaštite vodotoka propisan Planom upravljanja vodnim područjima definira su i aglomeracije koje u planskom razdoblju moraju provesti dogradnju ili izgradnju uređaja za pročišćavanje otpadnih voda. U zadanom planskom razdoblju implementacijom ovog projekta sustava odvodnje i pročišćavanja otpadnih voda aglomeracije Pitomača očekuje se postizanje cilja smanjenja opterećenja BPK$_5$ i postizanje „vrlo dobro“ stanja vodnog tijela Kalilo u segmentu fizikalno-kemijskih parametara (BPK$_5$). Neovisno o navedenom, nastavak kontinuiranog monitoringa vodnih tijela prema obvezama iz Okvirne direktive o vodama, a nakon izgradnje zahvata, će utvrditi novo stanje vodnog tijela. U slučaju nepostizanja najmanje „dobrog“ stanja, biti će nužno propisati i implementirati i dodatne mjere s ciljem smanjenja opterećenja BPK$_5$.

Utjecaj ovog zahvata, odnosno općenito kakvoće efluenta, nema nikakav utjecaj na hidromorfološko stanje vodnog tijela, te se stoga zaključuje kako sva vodna tijela koja će služiti kao (posredni ili neposredni) recipijenti zadovoljavaju tražene uvjete za ispuštanje efluenta.

S obzirom na prepoznate utjecaje, mogući utjecaj planiranog zahvata na vode i stanje vodnog tijela tijekom pripreme i izgradnje ocijenjen je kao manje značajan privremen negativan utjecaj.

Mogući utjecaji na okoliš

Predmetni zahvat izgradnje UPOV-a „Pitomača“ je izvan zona sanitarne zaštite izvorišta, a dio zahvata izgradnje i dogradnje sustava odvodnje biti će nećemo utjecaj na hidromorfološko stanje vodnog tijela, te se stoga zaključuje kako sva vodna tijela koja će služiti kao (posredni ili neposredni) recipijenti zadovoljavaju tražene uvjete za ispuštanje efluenta.

Puštanjem u rad sustava i UPOV-a aglomeracije Pitomaca utjecaj na površinske vode bit će izuzetno pozitivan, jer će se poboljšati stupanj pročišćavanja koji u postojećem stanju obuhvaća samo naselje Pitomača, te će se riješiti trenutno neprimjerenny način zbrinjavanja otpadnih voda ostalih naselja buduće aglomeracije (procjeđivanje septičkih jama upitne vodonepropusnosti stambenih i drugih objekata u pojedinim naseljima buduće aglomeracije bez kanalizacijske mreže).

Predviđenim II stupnjem pročišćavanja postić će se daleko bolji učinak pročišćavanja voda od onog na trenutnom uređaju za pročišćavanje (mehaničko pročišćavanje). Također se predvide da će izabranoj konvencionalnom tehnologijom pročišćavanja, kakvoća pročišćene vode biti bolja u odnosu na vrijednosti propisane spomenutim Pravilnikom. Negativan utjecaj na površinske vode, a posredno i podzemne, tijekom rada uređaja kako je već prethodno
navedeno, moguć je u slučaju ispuštanja nedovoljno pročišćene ili nepročišćene otpadne vode, odnosno neodgovarajuće kakvoće efluenta koja se ispušta u recipient. Navedeno može biti uzrokovano poremećajem u radu uređaja ili postojanju kvara na dijelovima uređaja kao i zbog lošeg održavanja sustava za pročišćavanje otpadnih voda, što je potrebno sprječavati pravilnim održavanjem i kontrolom svih dijelova predmetnog sustava prema propisanim mjerama i uvjetima.

Tijekom korištenja zahvata može se očekivati poboljšanje stanja vodnog tijela obzirom da se korištenjem sustava odvodnje smanjuje broj opterećenja iz točkastih izvora, dok sam uređaj za pročišćavanje otpadnih voda ima za cilj poboljšati stanje priobalnih voda.

4.1.2 Utjecaj na tlo

Mogući utjecaji na okoliš tijekom građenja zahvata

Nešto manjim dijelom prolazi kroz mozaike kultiviranih površina i intenzivno obrađenih oranica na komasiranim površinama (većinom umjereno ograničeno obradivno tlo). Na površini predviđenoj za dogradnju UPOV-a (istočno od ograde postojećeg uređaja) doci će do prenamjene funkcije tla, budući da će se na tom dijelu graditi novi objekti uz provedbu iskopa zemljišta, ravnanja terena za pripremu gradnje objekata za biološko pročišćavanje otpadnih voda. Očekuju se iskopi većih volumena (bioaeracijskih spremnika, naknadnih taložnika i pratećih objekata), uz trajno uklanjanje sve vegetacije (prema Karti staništa pretežito travnati pokrov oranica) na toj površini.

S obzirom na prepoznate utjecaje, mogući utjecaj planiranog zahvata na tlo tijekom pripreme i izgradnje ocijenjen je kao manje značajan negativan utjecaj

Mogući utjecaji na okoliš tijekom korištenja zahvata

Utjecaj na tlo i poljoprivredno zemljište tijekom rada sustava odvodnje značajno je manji nego prilikom pripreme terena i građevinskih radova. Morfološke promjene tla nastale nasipavanjem, usijecanjem i sličnim građevinskim radovima pri gradnji, sanirat će se i postupno vratiti u stanje prije poduzimanja zahvata.

S obzirom na prepoznate utjecaje, mogući utjecaj planiranog zahvata na tlo tijekom korištenja zahvata ocijenjen je kao: nema utjecaja na okoliš
4.1.3 Utjecaj na zrak

Mogući utjecaji na okoliš tijekom građenja zahvata

Slab utjecaj na zrak očekuje se tijekom zemljanih radova koji su praćeni podizanjem prašine u zrak koja se zatim taloži po okolne površine. Osim tijekom izvođenja radova, do onečišćenja dolazi i uslijed rada mehanizacije i vozila s unutarnjim izgaranjem. Intenzitet ovog onečišćenja ovisi u prvom redu o vremenskim prilikama, te o jačini vetra koji raznosi onečišćenja. Emisije koje će nastajati od rada mehanizacije bit će ograničene isključivo na područje izvođenja radova poglavito kada nema pojave vjetra, odnosno kada je prisutna tišina. Međutim, tijekom pojave vjetra, širenje onečišćenja zraka je moguće u smjeru strujanja zraka. Na širem području dominantni vjetrovi pušu iz smjera sjeverozapada, sjevera i jugozapada. Naseljena područja smještena su sjeverno (Strossmayerova i Draškovića ulica), južno (Dravska ulica) i zapadno (Gajeva ulica) od lokacije uređaja za pročišćavanje otpadnih voda, a najbliži objekti udaljeni su sa sjeverne kao i južne strane oko 300 m od lokacije uređaja za pročišćavanje otpadnih voda. Uzimajući u obzir planiranu građevinsku mehanizaciju tijekom radova građenja, korištenjem matematičkog modela disperzije onečišćenja zraka utvrđeno je da neće biti negativnog utjecaja na kvalitetu zraka tijekom pripreme i izgradnje ocijenjen je kao manje značajan negativan utjecaj na okoliš.

Mogući utjecaji na korištenje projekta

Općenito, postrojenja za obradu otpadnih voda proizvode uvijek, u manjoj ili većoj mjeri, plinovite tvari, koje nisu otrovne u količinama u kojima se javljaju oko uređaja, no mogu imati neugodan miris i neprikladne su ukoliko se javljaju u blizini naselja. Negativan efekt tih mirisa može se ukloniti prikladnim smještajem uređaja podalje od stambenih zona, odgovarajućom obradom otpadnih voda koja smanjuje neugodne mirise i privremenim skladištenjem otpadnog mulja na propisani način. Onečišćeni zrak pojedinih dijelova uređaja može biti negativan utjecaj na korištenje projekta, ako u blizini ima naselja, treba paziti na dominantne smjerove vjetra i u tom slučaju utvrđeno je da neće biti negativnog utjecaja na naseljeno područje u smjeru sjevera i juga koji su najbliži lokaciji zahvata, kod pojave sjevernog i jugozapadnog vjetra umjerene jakosti od 4 Bf.

Mogući utjecaji na korištenje projekta

Tijekom pronosa neugodnih mirisa, ukoliko do njihove pojave dođe, njihova koncentracija i intenzitet opadaju s udaljenosti budući da dolazi do disperziranja i razrjeđenja s okolnim zrakom. U meteorološkim uvjetima bez prisutnosti vjetra (tišina), eventualna pojava neugodnih mirisa će biti vezani isključivo uz izvor emisije, međutim tijekom pojave vjetra dolazi do
njegovog širenja odnosno pronosa u smjeru strujanja zraka. Najблиži stambeni objekti smješteni oko 300 m sjeverno i južno od lokacije UPOV –a, a dominantni vjetrovi koji pušu na širem području Pitomaće su iz smjera sjevera i sjeverozapada, te jugozapada, pa je za očekivati pronos neugodnih mirisa u tim smjerovima tijekom vjetrovita vremena.

Tijekom korištenja zahvata uređaja za pročišćavanje otpadnih voditi računa o utjecaju na kvalitetu zraka sukladno Zakonu o zaštiti zraka (130/11, 47/14) i Uredbe o razinama onečišćujućih tvari u zraku (117/12) u djelu koji se odnosi na poštivanje propisanih graničnih vrijednosti za zaštitu zdravlja ljudi i kvalitetu življenja (dodijavanje mirisom).

S obzirom na prepoznate utjecaje, mogući utjecaj planiranog zahvata na kvalitetu zraka tijekom korištenja zahvata ocijenjen je kao manje značajan negativan utjecaj na okoliš.

4.1.4 Klimatske promjene

Mogući utjecaji na okoliš tijekom građenja zahvata

Tijekom građenja zahvata nastaju ispušni plinovi od rada mehanizacije. Njihov utjecaj na klimatske promjene je kratkog trajanja te je manje značajan zanemariv negativan utjecaj.

Mogući utjecaji na okoliš tijekom korištenja zahvata

Utjecaj projekta na klimatske promjene

U svezi utjecaja na klimatske promjene, izmjenama Direktive direktno se definiraju termini „utjecaji na klimatske promjene“ i „staklenički plinovi“. Također se detaljno navode ciljevi rješavanja problema vezanih uz klimatske promjene koje je potrebno postići kao dio procedure procjene utjecaja na okoliš propisane za projekte iznijetine Direktive direktivama Aneksima direktive - utjecaji projekta na klimatske promjene, doprinos projekta poboljšanju otpornosti na klimatske promjene i utjecaj klimatskih promjena na sam projekt. Nadalje, izmjenije direktive opisuju probleme koje je potrebno detaljno riješiti u okviru postupka procjene utjecaja zahvata na okoliš — emisija stakleničkih plinova, potencijal ublažavanja utjecaja, utjecaji relevantni za prilagodbu klimatskim promjenama ukoliko projekt uzima u obzir rizike vezane uz klimatske promjene i slično.

Procjena emisije stakleničkih plinova

Povećanje zabrinutosti o globalnom zatopljenju rezultiralo je u razvijanju svijesti o emisiji stakleničkih plinova (GHG – greenhouse gases). Staklenički plinovi sprijećavaju radijaciju topline sa Zemlje nazad u atmosferu, čime dolazi do povećanja temperature na zemljinoj površini. Ovi plinovi se uglavnom definiraju u ekvivalentnoj količini CO₂. Razvijen je globalni
sustav trgovine kvotama emisija stakleničkih plinova kojim se nastoji smanjiti zagađenje putem gospodarskih poticaja za smanjenje emisija ovih plinova.

S ciljem procjene utjecaja zahvata na klimatske promjene, za predmetni zahvat je potrebno procijeniti Uglični otisak (Carbon Footprint) uređaja za pročишћавања otpadnih voda (UPOV) kao i ostalih elementa sustava odvodnje otpadnih voda uzimajući u obzir emisije stakleničkih plinova, korištenje električne energije, stvaranje električne energije, te transportne potrebe.

Kako bi se procijenile emisije stakleničkih plinova na UPOV-u Pitomača potrebno je sačiniti popis stakleničkih plinova koji nastaju na uređaju te njihov potencijal globalnog zatopljenja. Potencijal globalnog zatopljenja stakleničkih plinova je odnos topline koja se zadržava jediničnom masom plina u usporedbi sa jediničnom masom CO₂ tijekom određenog vremenskog razdoblja (obično 100 godina). Potencijal globalnog zatopljenja pojedinih stakleničkih plinova je dan u tablici nastavno - za razdoblje od 100 godina (prema USA Electronic code of federal regulations, TITLE 40—Protection of Environment, PART 98—Mandatory Greenhouse Gas Reporting, posljednje izmjene siječanj 8, 2015).

Tablica 4.1 Potencijal globalnog zatopljenja za stakleničke plinove koji nastaju na Uređajima za pročишћавања otpadnih voda

<table>
<thead>
<tr>
<th>Staklenički plin</th>
<th>Oznaka</th>
<th>Potencijal globalnog zatopljenja</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uglični dioksid</td>
<td>CO₂</td>
<td>1</td>
</tr>
<tr>
<td>Metan</td>
<td>CH₄</td>
<td>25</td>
</tr>
<tr>
<td>Dušikov oksid</td>
<td>N₂O</td>
<td>298</td>
</tr>
</tbody>
</table>

Izvori nastanka stakleničkih plinova

Prema izvoru nastanka plinova na uređaju za pročишћавања otpadnih voda mogu se definirati direktni, indirektni te drugi indirektni izvori stakleničkih plinova (European Investment Bank Induced GHG Footprint - The carbon footprint of projects financed by the Bank: Methodologies for the Assessment of Project GHG Emissions and Emission Variations, Version 10.1). Na osnovu navedenog definiraju se granice utjecaja pojedinog projekta u okviru kojih će se vršiti izračun apsolutne, nulte i relativne emisije stakleničkih plinova.

Direktna emisija stakleničkih plinova: fizički nastaju na izvorima koji su direktno vezani uz aktivnosti na uređaju te se nalaze unutar obuhvata uređaja.

Indirektna emisija stakleničkih plinova: odnose se na emisije koje nastaju kao posljedica generiranja električne energije koja se koristi za potrebe uređaja. Indirektna emisije nastaju van granica projekta (npr. na lokaciji termoelektrane) ali obzirom da se korištenje el. energije može kontrolirati na samom uređaju putem raznih mjer učinkovitog korištenja energije, ovakve emisije se trebaju uzeti u obzir.

Ostale indirektna emisije: su posljedica aktivnosti na uređaju ili nastaju na izvorima koji nisu pod ingerencijom uprave uređaja. Pri izračunu ugljičnog otiska uglavnom se uzimaju u obzir samo direktna i indirektna emisije.

U nastavku je dan popis definiranih direktnih izvora stakleničkih plinova na uređaju za pročишћавања otpadnih voda:

- Biološki postupak pročишћавања otpadne vode (CO₂)
Obzirom da se radi o uređaju II. stupnja pročišćavanja otpadnih voda, te da se na uređaju na uklanjaju hranjive tvari, procjena emisije stakleničkih plinova ne obuhvaća nastanak N₂O.

U nastavku je dan popis indirektnih izvora stakleničkih plinova koji su vezani uz rad UPOV-a.

1. Potrošnja električne energije na slijedećim komponentama sustava odvodnje
 a. UPOV
 b. Crpne stanice

2. Transport ugušćenog mulja na polja za ozemljavanje mulja UPOV-a Suhopolje

Proračun ugljičnog otiska – izravni izvori

Biološki postupak pročišćavanja otpadne vode (CO₂)

Pри procjeni emisija CO₂ sa sustava za pročišćavanje otpadnih voda, postoje dva glavna tipa procesa za biološki tretman: aerobni i anaerobni. Određene komponente tehnološkog procesa poput taložnica mogu biti vrlo kompleksni sustavi koji uključuju oba tipa biološkog tretmana. Neovisno o vrsti biološkog procesa, biokemijske reakcije su vrlo slične u oba slučaja, pri čemu se organski ugljični spojevi procesom oksidacije prelaze u CO₂ i/ili CH₄, i vodu.

Danas su u primjeni najvećim dijelom aerobni sustavi pročišćavanja otpadnih voda. Formulom u nastavku moguće je procijeniti emisije CO₂ iz aerobnog postupka biološkog pročišćavanja otpadne vode sustava pri čemu se uzima u obzir i udio ugljika u obliku CH₄ generiranog u bioplinu.

\[
CO₂ = 10^{-6} \times Q_{WW} \times OD \times Eff_{OD} \times CF_{CO₂} \times [(1 - MCF_{WW} \times BG_{CH₄}) \times (1 - \lambda)]
\]

Tablica 4.2: Proračun emisija CO₂ iz biološkog postupka pročišćavanja otpadne vode

<table>
<thead>
<tr>
<th>Elemen t</th>
<th>Biološki postupak pročišćavanja otpadne vode</th>
<th>Iznos</th>
<th>Jedinića</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>Emisija CO₂ (satna)</td>
<td>0.01</td>
<td>t/h</td>
</tr>
<tr>
<td>Q_{WW}</td>
<td>Prosječni dotok otpadne vode</td>
<td>31.25</td>
<td>m³/h</td>
</tr>
<tr>
<td>OD</td>
<td>Koncentracija BPK₅ u otpadnoj vodi</td>
<td>700.00</td>
<td>g/m³</td>
</tr>
<tr>
<td>Eff_{OD}</td>
<td>Potreban stupanj uklanjanja BPK₅</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>CF_{CO₂}</td>
<td>Konverzijski faktor za produkciju CO₂ po jedinici BPK₅</td>
<td>1.375</td>
<td>g CO₂/g BPK₅</td>
</tr>
<tr>
<td>MCF_{WW}</td>
<td>Korekcijski faktor za metan - udio ulaznog BPK₅ koji se anaerobno razgrađuje</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>BG_{CH₄}</td>
<td>Udio ugljika u obliku metana u generiranom bioplinu</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td>l</td>
<td>Udio biomase (odnos ugljika vezanog u mulj i ugljika potrošenog u postupku pročišćavanja)</td>
<td>0.65</td>
<td></td>
</tr>
</tbody>
</table>
Sam proces razgradnje otpadnih voda događa se i u postojećem stanju u individualnim prikladnim sustavima (IAS) i bez postojanja centraliziranih postupaka pročišćavanja otpadnih voda. Slijedom navedenog, ovaj udio emisija stakleničkih plinova prisutan je i u postojećem stanju.

U postojećem stanju određeni veći dio aglomeracije Pitomača spojen je na individualne prikladne sustave koji predstavljaju znatan izvor stakleničkih plinova zbog biološkog procesa razgradnje otpadnih voda. Određena se emisija stakleničkih plinova predviđa se u centralnom sustavu prikupljanja i pročišćavanja otpadnih voda te prestanak korištenja individualnih prikladnih sustava.

Proračun ugljičnog otiska – neizravni izvori

U okviru izračuna ugljičnog otiska uzimaju se u obzir i indirektni izvor nastanka stakleničkih plinova koji su vezani uz rad uređaja. U slučaju aglomeracije Pitomača identificirana su dvije grupe neizravnih izvora:

1. **Potrošnja električne energije na UPOV-u i crpnim stanicama sustava odvodnje**
2. **Transport ugušćenog mulja od UPOV-a Pitomača do polja za ozemljavanje mulja**

UPOV-a Suhopolje

Bruto potrošnja el. energije na planiranom UPOV-u Pitomača iznosi 225.000 kWh/god, dok se na svim crpnim stanicama na sustavu predviđa potrošnja el. energije u iznosu od 269.500 kWh/god. U nastavku je dan izračun količina nastalog CO\(_2\) koji rezultira potrošnjom navedenih količina el. energije.

Tablica 4.3: Izračun ukupne godišnje emisije CO\(_2\) od potrošnje električne energije

<table>
<thead>
<tr>
<th>Komponenta</th>
<th>Napon priključka</th>
<th>Potrošnja el. energije (kWh/god)</th>
<th>g CO(_2) po kWh*</th>
<th>Godišnja emisija CO(_2) (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPOV</td>
<td>srednji napon</td>
<td>225.000,00</td>
<td>317,00</td>
<td>71,33</td>
</tr>
<tr>
<td>Crpne stanice</td>
<td>niski napon</td>
<td>44.500,00</td>
<td>327,00</td>
<td>14,55</td>
</tr>
<tr>
<td>UKUPNO</td>
<td>--</td>
<td>269.500,00</td>
<td>--</td>
<td>86,00</td>
</tr>
</tbody>
</table>

*Prosječan iznos emisije CO\(_2\) (g/kWh) koji nastaje kao posljedica potrošnje električne energije ovisno o naponu priključka je preuzet iz dokumenta "European Investment Bank Induced GHG Footprint - The carbon footprint of projects financed by the Bank: Methodologies for the Assessment of Project GHG Emissions and Emission Variations, Version 10.1", travanj 2014., Annex 2, Table A2.3

Također, neizravan izvor predstavlja i transport ugušćenog mulja do lokacije UPOV-a Suhopolje. Inkrementalna emisija CO\(_2\) od transporta dana je u sljedećoj tablici.

Tablica 4.4: Izračun ukupne godišnje emisije CO\(_2\) od transporta ugušćenog mulja

<table>
<thead>
<tr>
<th>Parametar</th>
<th>Jedinica</th>
<th>Iznos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tip šasije i maksimalno dozvoljena bruto masa vozila (MDM)</td>
<td></td>
<td>Kruta šasija, MDM >17 t</td>
</tr>
<tr>
<td>Tip goriva</td>
<td></td>
<td>diesel</td>
</tr>
</tbody>
</table>
ELABORAT ZAŠTITE OKOLIŠA

SUSTAV ODVODNJE I PROČIŠĆAVANJA OTPADNIH VODA AGLOMERACIJE PITOMAČA

<table>
<thead>
<tr>
<th>Izračun ukupne godišnje emisije CO$_2$ od transporta mulja</th>
<th>Jedinica</th>
<th>Iznos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ukupan godišnji transport</td>
<td>t*km</td>
<td>190.500</td>
</tr>
<tr>
<td>Specifična emisija CO$_2$</td>
<td>kg CO$_2$/t*km</td>
<td>0,19623</td>
</tr>
<tr>
<td>Specifična emisija CH$_4$ kao CO$_2$ ekvivalent</td>
<td>kg CO$_2$/t*km</td>
<td>0,00010</td>
</tr>
<tr>
<td>Specifična emisija N$_2$O kao CO$_2$ ekvivalent</td>
<td>kg CO$_2$/t*km</td>
<td>0,00205</td>
</tr>
<tr>
<td>Ukupna specifična emisija direktnih stakleničkih plinova*</td>
<td>kg CO$_2$/t*km</td>
<td>0,19838</td>
</tr>
<tr>
<td>Ukupna specifična emisija indirektnih stakleničkih plinova**</td>
<td>kg CO$_2$/t*km</td>
<td>0,03806</td>
</tr>
<tr>
<td>Ukupna specifična emisija stakleničkih plinova</td>
<td>kg CO$_2$/t*km</td>
<td>0,23644</td>
</tr>
<tr>
<td>Ukupna emisija CO$_2$</td>
<td>kg CO$_2$</td>
<td>37.382</td>
</tr>
<tr>
<td>Ukupna emisija CH$_4$ kao CO$_2$ ekvivalent</td>
<td>kg CO$_2$</td>
<td>19</td>
</tr>
<tr>
<td>Ukupna emisija N$_2$O kao CO$_2$ ekvivalent</td>
<td>kg CO$_2$</td>
<td>391</td>
</tr>
<tr>
<td>Ukupno direktni CO$_2$</td>
<td>kg CO$_2$</td>
<td>37.791</td>
</tr>
<tr>
<td>Ukupno indirektni CO$_2$ kao CO$_2$ ekvivalent</td>
<td>kg CO$_2$</td>
<td>7.250</td>
</tr>
<tr>
<td>Ukupna emisija CO$_2$ kao CO$_2$ ekvivalent</td>
<td>kg CO$_2$</td>
<td>45.042</td>
</tr>
</tbody>
</table>

Izvor: AEA for the Department of Energy and Climate Change (DECC) and the Department for Environment, Food and Rural Affairs (Defra)

Napomene:
*Direktni staklenički plinovi podrazumijevaju emisiju CO$_2$e od izgaranja goriva.
**Indirektni staklenički plinovi podrazumijevaju emisije CO$_2$e od ekstrakcije i transporta primarnih fosilnih goriva, rafiniranja, distribucije, skladištenja i prodaje gotovih goriva.

Proračun ugljičnog otiska – rekapitulacija

Tablica 4.5: Rekapitulacija godišnje emisije CO$_2$ (tona)

<table>
<thead>
<tr>
<th>Rekapitulacija godišnje emisije CO$_2$ (tona)</th>
<th>Ukupna godišnja emisija CO$_2$ (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Izvor emisije</td>
<td></td>
</tr>
<tr>
<td>UPOV</td>
<td>65</td>
</tr>
<tr>
<td>Transport</td>
<td>45</td>
</tr>
<tr>
<td>Potočnja el. energije</td>
<td>86</td>
</tr>
<tr>
<td>Smanjenje emisija uslijed ukidanja septičkih jama</td>
<td>-1.687</td>
</tr>
<tr>
<td>SVEUKUPNO (t CO$_2$/god)</td>
<td>-1.491</td>
</tr>
</tbody>
</table>

Temeljem proračunatih inkrementalnih emisija stakleničkih plinova, može se zaključiti kako je doprinos projekta ukupnim emisijama **pozitivan**, odnosno rezultirat će smanjenjem godišnjih emisija CO$_2$ odnosno rezultirat će smanjenjem godišnjih emisija od cca. 1.500 t CO$_2$/god.
4.1.5 Utjecaj klimatskih promjena na projekt

Obzirom na evidentne trendove globalnog zatopljenja, potrebno je napraviti procjenu utjecaja ovih promjena na predmetni projekt te primijeniti mjere prilagodbe gdje je to potrebno kako bi se osigurala održivost projekta.

Temeljem dokumenta „Non-paper Guidelines for Project Managers: Making vulnerable investments climate resilient“, osjetljivost ovog projekta na klimatske promjene je analizirana na 8 primarnih klimatskih aspekata i 8 sekundarnih aspekata u odnosu na 4 osnovna aspekta projektnih aktivnosti kako za trenutno stanje tako i za buduće stanje klimatskih promjena.

Tablica 4.6: Osnovni aspekti projektnih aktivnosti

<table>
<thead>
<tr>
<th>Osnovni aspekti projekta</th>
<th>Odvodnja i pročišćavanje otpadnih voda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportni elementi</td>
<td>Kolektori i crpne stanice</td>
</tr>
<tr>
<td>Ulazni parametri</td>
<td>El. energija</td>
</tr>
<tr>
<td>Izlazni parametri</td>
<td>Kakvoća pročišćenih voda</td>
</tr>
<tr>
<td>Procesi i postrojenja</td>
<td>Uredaji za pročišćavanje otpadnih voda</td>
</tr>
</tbody>
</table>

Tablica 4.7: Primarni i sekundarni efekti klimatskih promjena

<table>
<thead>
<tr>
<th>Primarni efekti klimatskih promjena</th>
<th>Sekundarni efekti klimatskih promjena</th>
</tr>
</thead>
<tbody>
<tr>
<td>Povećanje srednjih temperatura</td>
<td>Povećanje sušnih perioda</td>
</tr>
<tr>
<td>Povećanje ekstremnih temperature</td>
<td>Raspoloživost vode</td>
</tr>
<tr>
<td>Promjene u prosječnoj količini oborina</td>
<td>Oluje</td>
</tr>
<tr>
<td>Promjene u ekstremnim oborinama</td>
<td>Poplave</td>
</tr>
<tr>
<td>Prosječna brzina vjetra</td>
<td>Erozija tla</td>
</tr>
<tr>
<td>Promjene u maksimalnim brzinama vjetra</td>
<td>Nestabilnosti tla / klizišta</td>
</tr>
<tr>
<td>Vlažnost zraka</td>
<td>Kvaliteta zraka</td>
</tr>
<tr>
<td>Solarna iradijacija</td>
<td>Toplinski "otoci" u urbanim zonama</td>
</tr>
</tbody>
</table>

Projektne komponente su analizirane na osjetljivost te izloženost u odnosu na klimatske promjene. Na osnovu analize osjetljivost i izloženosti projekta dobivena je ukupna ranjivost projekta na klimatske promjene. U nastavku je dan pregled prepoznatih značajnih utjecaja klimatskih promjena na predmetni projekt.

Osjetljivost je vrednovana u 3 klase:

- 0 = nema osjetljivosti
- 1 = srednja osjetljivost
- 2 = visoka osjetljivost

Nadalje, izloženost projekta prema 16 klimatskih efekata vrednovana je za trenutno stanje i buduće stanje.

Izloženost je vrednovana u 3 klase:

- 1 = nema izloženosti
- 2 = srednja izloženost
- 3 = visoka izloženost
Ranjivost projekta na klimatske promjene je stoga računata na osnovu formule:

\[\text{Ranjivost} = \text{Osjetljivost} \times \text{Izloženost} \]

Rezultat je matrica ranjivosti koja je dana u nastavku:

<table>
<thead>
<tr>
<th>Izloženost</th>
<th>Osjetljivost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 1 2</td>
</tr>
<tr>
<td>2</td>
<td>0 2 4</td>
</tr>
<tr>
<td>3</td>
<td>0 3 6</td>
</tr>
</tbody>
</table>

Tablica 4.8 Matrica ranjivosti

Izloženost projekta u postojećem i planiranom stanju analizirana je u nastavku te je prezentirana ranjivost pojedinih komponenti projekta s raznih aspekata (transportni elementi, ulazni elementi, izlazni parametri i procesi/postrojenja) također u postojećem i planiranom stanju. Zaključuje se da je projekt ranjiv na slijedeće efekte klimatskih promjena: \textbf{12 – Poplave} za aspekt odvodnje otpadnih voda.
<table>
<thead>
<tr>
<th>Transportni element</th>
<th>Izlazni parametri</th>
<th>Ulazni parametri</th>
<th>Procesi i postrojenja</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odvodnja</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ranjivost</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tablica 4.9 Ranjivost projekta na efekte klimatskih promjena
Tablica 4.10 Izloženost projekta efektiima klimatskih promjena

<table>
<thead>
<tr>
<th>Br</th>
<th>Osećajnost</th>
<th>Primarni efekti</th>
<th>Sekundarni efekti</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Povećanje srednjih temperatura</td>
<td>Projekt je smješten u području s kontinentalnom klimom s toplim jelim i hladnim zimama.</td>
<td>Srbijansko područje je predznak izloženosti, a u pojavnim područjima brojne vijesti o ekstremnim oborinama.</td>
</tr>
<tr>
<td>2</td>
<td>Povećanje ekstremnih oborina</td>
<td>Ne očekuje se promjena</td>
<td>Ne očekuje se promjena</td>
</tr>
<tr>
<td>3</td>
<td>Prnjavor u maksimalnim oborinama</td>
<td>Ne očekuje se promjena</td>
<td>Ne očekuje se promjena</td>
</tr>
<tr>
<td>4</td>
<td>Promjene u vodnom količinom</td>
<td>Ne očekuje se promjena</td>
<td>Ne očekuje se promjena</td>
</tr>
<tr>
<td>5</td>
<td>Promjene u zemljoljepi</td>
<td>Ne očekuje se promjena</td>
<td>Ne očekuje se promjena</td>
</tr>
<tr>
<td>6</td>
<td>Promjene u prosjektno količinom</td>
<td>Ne očekuje se promjena</td>
<td>Ne očekuje se promjena</td>
</tr>
<tr>
<td>7</td>
<td>Promjene u prosjektno količinom</td>
<td>Ne očekuje se promjena</td>
<td>Ne očekuje se promjena</td>
</tr>
<tr>
<td>8</td>
<td>Solarni izloženost</td>
<td>Ne očekuje se promjena</td>
<td>Ne očekuje se promjena</td>
</tr>
<tr>
<td>9</td>
<td>Povećanje sušnih perioda</td>
<td>Ne očekuje se promjena</td>
<td>Ne očekuje se promjena</td>
</tr>
<tr>
<td>10</td>
<td>Povećanje sušnih perioda</td>
<td>Ne očekuje se promjena</td>
<td>Ne očekuje se promjena</td>
</tr>
<tr>
<td>11</td>
<td>Raspoloživost vode</td>
<td>Ne očekuje se promjena</td>
<td>Ne očekuje se promjena</td>
</tr>
<tr>
<td>12</td>
<td>Raspoloživost vode</td>
<td>Ne očekuje se promjena</td>
<td>Ne očekuje se promjena</td>
</tr>
<tr>
<td>13</td>
<td>Raspoloživost vode</td>
<td>Ne očekuje se promjena</td>
<td>Ne očekuje se promjena</td>
</tr>
<tr>
<td>14</td>
<td>Raspoloživost vode</td>
<td>Ne očekuje se promjena</td>
<td>Ne očekuje se promjena</td>
</tr>
<tr>
<td>15</td>
<td>Raspoloživost vode</td>
<td>Ne očekuje se promjena</td>
<td>Ne očekuje se promjena</td>
</tr>
<tr>
<td>16</td>
<td>Raspoloživost vode</td>
<td>Ne očekuje se promjena</td>
<td>Ne očekuje se promjena</td>
</tr>
</tbody>
</table>
Procjena rizika i mjere prilagodbe za projekt i projektne komponente

Za one klimatske efekte gdje je ranjivost rezultat visoke osjetljivosti i visoke ili srednje izloženosti, provedena je analiza rizika te su vrednovane mjere prilagodbe.

<table>
<thead>
<tr>
<th>Ranjivost</th>
<th>12</th>
<th>Plavave</th>
</tr>
</thead>
<tbody>
<tr>
<td>Razina ranjivosti</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transportni elementi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Izlazni parametri</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ulazni parametri</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Procesi i postrojenja</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opis</td>
<td>Lokalno plavljenje je prisutno u uvjetima ekstremnih oborina.</td>
<td></td>
</tr>
<tr>
<td>Rizici</td>
<td>Očekuje se povećana učestalost i intenzitet poplava obzirom na povećanje srednjih i ekstremnih oborina.</td>
<td></td>
</tr>
<tr>
<td>Veze</td>
<td>OD3</td>
<td>Promjene u prosječnoj količini oborina</td>
</tr>
<tr>
<td></td>
<td>OD4</td>
<td>Promjene u ekstremnim oborinama</td>
</tr>
<tr>
<td>Mogućnost pojave</td>
<td>3</td>
<td>Očekuje se povećanje proš. količine oborina do 12%.</td>
</tr>
<tr>
<td>Posljedice</td>
<td>4</td>
<td>Plavljenja na slivu Drave (recipient pročišćenih otpadnih voda).</td>
</tr>
<tr>
<td>Faktor rizika</td>
<td>12 / 25</td>
<td></td>
</tr>
</tbody>
</table>

Tablica 4.11 Analiza rizika i mjera prilagodbe projekta klimatskim promjenama za efekt klimatskih promjena 12: Plavave

Može se zaključiti da su najznačajniji utjecaji klimatskih promjena na komponente projekta vezani uz pojavost poplava na slivu rijeke Drave. Na području sliva rijeke Drave je izveden niz građevina obrane od poplava (nasi, akumulacije) koje su implementirane kroz zasebne projekte u svrhu ispunjavanja obveza koje propisuje Direktiva o procjeni i upravljanju poplavnim rizicima.

4.1.6 Zaštićena područja

Mogući utjecaji na okoliš tijekom građenja zahvata

Prema Upisniku zaštićenih područja predmetni zahvat se ne nalazi na Zaštićenim područjima prema zakonu o zaštiti prirode. Prema Upisniku zaštićenih područja predmetni sustav odvodnje nalazi se u neposrednoj blizini zaštićenih područja. Najbliže zaštićeno područje je Mura-Drava (regionalni park) koje se nalazi cca. 200 m od zahvata, dok se područja Jelkuš...
Androvnosti vezane za izgradnju uređaja za pročišćavanja neće dovesti do značajnih promjena u krajobrazu, budući da na predmetnoj lokaciji postoji postojao dio uređaja za mehaničko pročišćavanje otpadnih voda. Tijekom izvođenja radova na rekonstrukciji i dogradnji uređaja za pročišćavanje otpadnih voda, na lokaciji zahvata formirati će se gradilište, biti će prisutna mehanizacija, oprema, te prateći objekti potrebni za izgradnju uređaja, koji će djelomično utjecati na krajobraznu sliku u zoni građenja uzrokovan antropogenim utjecajem. Pripremnim i građevinskim radovima uslijed skladištenja materijala potrebnog za izvođenje radova građenja i dr., kao i uređenja prometnih površina za rad građevinske mehanizacije, dolazi do manjih promjena dijela prirodnih karakteristika. Lokacija UPOV-a nalazi se u ravničarskom području, na kojem nema eksponiranih reljefnih struktura. S aspekta vizualne izloženosti tijekom izvođenja građevinskih radova promjene u okolišu neće biti značajno vizualno izložene, budući da su izgrađena građevinska područja i točke pružanja vizura (prometnice) dovoljno udaljene od lokacije zahvata (>300 m).

S obzirom na prepoznate utjecaje, mogući utjecaj planiranog zahvata na krajobraz tijekom pripreme i izgradnje ocijenjen je kao manje značajni negativni utjecaj.

4.1.8 Krajobraz

Mogući utjecaji na okoliš tijekom građenja zahvata

Aktivnosti vezane za izgradnju uređaja za pročišćavanja neće dovesti do značajnih promjena u krajobrazu, budući da na predmetnoj lokaciji postoji postojao dio uređaja za mehaničko pročišćavanje otpadnih voda. Tijekom izvođenja radova na rekonstrukciji i dogradnji uređaja za pročišćavanje otpadnih voda, na lokaciji zahvata formirati će se gradilište, biti će prisutna mehanizacija, oprema, te prateći objekti potrebni za izgradnju uređaja, koji će djelomično utjecati na krajobraznu sliku u zoni građenja uzrokovan antropogenim utjecajem. Pripremnim i građevinskim radovima uslijed skladištenja materijala potrebnog za izvođenje radova građenja i dr., kao i uređenja prometnih površina za rad građevinske mehanizacije, dolazi do manjih promjena dijela prirodnih karakteristika. Lokacija UPOV-a nalazi se u ravničarskom području, na kojem nema eksponiranih reljefnih struktura. S aspekta vizualne izloženosti tijekom izvođenja građevinskih radova promjene u okolišu neće biti značajno vizualno izložene, budući da su izgrađena građevinska područja i točke pružanja vizura (prometnice) dovoljno udaljene od lokacije zahvata (>300 m).

S obzirom na prepoznate utjecaje, mogući utjecaj planiranog zahvata na krajobraz tijekom pripreme i izgradnje ocijenjen je kao manje značajni negativni utjecaj.
odnosno nizinском području uz rijeku Dravu. Zahvat je udaljen oko 300 m od najbližih stambenih objekata locirani sa sjeverne, južne i zapadne strane od predmetnog uređaja za pročišćavanje otpadnih voda. Oko lokacije zahvata su poljoprivredne površine što je čini vizualno istaknutom u prostoru. Obzirom da na toj lokaciji već postoji izgrađeni dio mehaničkog uređaja, izgradnja novog dijela uređaja neće dodatno narušiti vizuru prostora.

4.1.9 Bioraznolikost

Mogući utjecaji na okoliš tijekom građenja zahvata

- Utjecaj na floru, vegetaciju i staništa

Prilikom izgradnje/nadogradnje uređaja za pročišćavanje otpadnih voda i sustava javne odvodnje moguće je negativan utjecaj na floru i vegetaciju i staništa na području zahvata, što se ogleda u zaposjedanju staništa već postojećim radnim pojasima. Utjecaj na floru i vegetaciju može biti i pri izgradnji sustava odvodnje gdje se radi o trajnom zaposjedanju (grajevine UPOV-a). Na područjima s travnjakom vegetacijom očekuje se povratak staništa u stanje prije izvođenja zahvata za 1-2 godine. Privremen utjecaj biti će evidentan kod izgradnje sustava odvodnje gdje se radi o veoma malim, uglavnom rubnim površinama uz već postojeću prometnu infrastrukturu gdje će doći do promjene i gubitka postojeće vegetacije i staništa u urbanih i poljoprivrednim područjima. Privremen negativan utjecaj na biljne zajednice uzme u obzir smanjenje životinjskog staništa također se ogleda u povećanom količini prašine koja nastaje pri izvođenju zahvata za 1-2 godine. Obzirom da se radi o negativnom utjecaju na biljne zajednice, moguće je prepoznati negativni utjecaj na faunu i staništa.
površine koja se nalazi pod utjecajem zahvata otpada na gradske jezgre, aktivna seoska područja i kultivirane površine, a cjevovodi sustava odvodnje se pretežito polažu uz postojeću prometnu infrastrukturu, do gubitka staništa i pada njegove kvalitete doci će na vrlo malom prostoru, te se ovaj utjecaj ne smatra značajnim.

Buka i ljudske aktivnosti na neke će životinje djelovati uznemirujuće i one će napustiti područje zahvata u potrazi za mirnijim staništima. To se uglavnom odnosi na sisavce i ptice koji su posebno osjetljivi na takav tip uznemirivanja. Budući da se radi o području koje je već pod znatnim utjecajem čovjeka, a cjevovodi sustava odvodnje se u velikom dijelu polažu uz postojeću prometnu infrastrukturu, privremeni utjecaj povišene razine buke na faunu ne smatra se značajnim. Čestice prašine oslobođene za vrijeme radova taložite se na okolnoj vegetaciji, što može dovesti do smanjenja primarne produkcije, nepogodnosti biljaka za prehranu životinja, te pada kvalitete mikrostaništa neophodnih za razmnožavanje i život brojnih vrsta, prvenstveno beskralježnjaka.

Očekuje se da će utjecaj biti ograničen samo na uži pojas oko područja izvođenja radova. Prilikom izvođenja radova postoji mogućnost emisije drugih štetnih tvari u okoliš (osobito u tlo, te površinske i podzemne vode), ponajprije kao posljedica nepažnje prilikom radova, korištenja neispravnih vozila ili zbog neadekvatnog daljnjeg zbrinjavanja građevinskog materijala. Također su moguće, zbog izvođenja radova u blizini i/ili duž vodotokova uključenih u sustav odvodnje privremene promjene fizikalno-kemijskih svojstava vode (npr. zamućenje, onečišćenje u slijed emisije štetnih tvari i dr.) Opisani utjecaji ograničeni su na uže područje zahvata i pretežito su privremenog karaktera.

S obzirom na prepoznate utjecaje, mogući utjecaj planiranog zahvata na faunu tijekom pripreme i izgradnje generalno je ocijenjen kao manje značajan negativan utjecaj. Mogući utjecaji na okoliš tijekom korištenja zahvata

Tijekom redovitog rada sustava odvodnje i uređaja za pročišćavanje otpadnih voda doci će do pozitivnih utjecaja na okolni prostor, a posredno i na zaštićena područja obzirom se kanal Vir ulijeva u rijeku Dravu.

- Utjecaj na floru, vegetaciju i staništa

Izgradnja i nadogradnja sustava odvodnje i pročišćavanja otpadnih voda uvelike će doprinijeti održavanju, ali i poboljšanju kakvoće voda prijekoma, te izuzetno pozitivno djelovati na biljne zajednice vodotoka i staništa vezanih uz njih. Prilikom rada i održavanja sustava može doci do akcidenta tj. ekološke nesreće, te utjecaja na floru i vegetaciju. U slučaju oštećenja dijela građevina ili oštećenja instalacija otpadna voda bi se ispuštala nepročišćena u podzemlje ili na okolno zemljište i u vodotoke što bi negativno djelovalo na okolne biljne zajednice i stanišne tipove.

Uslijed prekida rada pojedinih dijelova uređaja, može doci do slabijeg učinka čišćenja otpadnih voda, te do kratkotrajnog povećanja obječenja vode prijekoma nizvodno od ispusta. Ti su prekidi uglavnom na relativno ograničenoj lokaciji, te ograničenog vremenskog trajanja i ne očekuje se značajan negativan utjecaj ovog tipa ukoliko se radi o rijetkim događajima. Zbog smanjenja protoka prijekoma ili drugih okolnosti može doci do „izvanrednog onečišćenja“ te
su moguće negativne posljedice u prijamniku i njegovoj okolini. Navedene akcidentne situacije doveli bi do većeg ili manjeg pogoršanja kakvoće vode prijamnika što bi imalo negativan utjecaj na biljne zajednice staništa koja su izravno vezana uz prijemnike. S obzirom na efekt razrješenja, te činjenicu da se radi o gradskim otpadnim vodama, ovi bi utjecaji imali pretežito lokalni karakter. Također, degradacijom postojeće vegetacije duž pojasa izgradnje kanalizacijske mreže postoji rizik od širenja ruderalnih i alohtonih invazivnih biljnih svojstava, što bi se moglo štetno odraziti na travnjake zajednice šireg područja.

S obzirom na prepoznate utjecaje, generalno je utjecaj planiranog zahvata na postojeću floru, vegetaciju i staništa tijekom korištenja zahvata ocijenjen kao pozitivan utjecaj na okoliš.
4.1.11 Buka

Mogući utjecaji na okoliš tijekom građenja zahvata

U naselju Pitomača najблиži stambeni objekti (obiteljske kuće), lokaciji planiranog UPOV-a, kako je navedeno udaljeni su oko 300 m (sjeverno i južno) od vanjske granice lokacije UPOV-a. Prema Pravilniku o najvišim dopuštenim razinama buke u sredini u kojoj ljudi rade i borave NN 145/04, razine buke ne smije prelaziti dozvoljenu granicu razine buke imisije za dan (Lday) od 55 dB(A) i 40 dB(A) za noć prema najблиžim stambenim objektima za 2. zonu – zona namijenjena samo stanovanju i boravku.

Za radove na otvorenom prostoru i građevinama (buka gradilišta) u skladu s navedenim Pravilnikom prema članku 17., tijekom dnevnog razdoblja dopuštena je ekvivalentna razina buke od 65 dB(A), a u razdoblju od 08 -18.00 sati dopušta se prekoracenje ekvivalentne razine buke od dodatnih 5 dB(A).

Također, iznimno je dopušteno prekoračenje dopuštenih razina buke za 10 dB(A), u slučaju ako to zahtijeva tehnološki proces u trajanju do najviše jednu noć, odnosno dva dana tijekom razdoblja od trideset dana. O navedenom je izvođač radova obvezan pisanim putem obavijestiti sanitarnu inspekciju, te evidentirati u građevinski dnevnik. Tijekom čekanja na utovar motori kamiona su ugašeni. U takvim uvjetima, buka od kamionskih vozila je zanemariva u odnosu na buku ostalih radnih strojeva. Povećana razina buke koja će nastati tijekom građenja zahvata biti će privatrenog karaktera.

S obzirom na prepoznate utjecaje, mogući utjecaj planiranog zahvata na povećanje razine buke tijekom pripreme i izgradnje ocijenjen je kao manje značajan negativan utjecaj.

Mogući utjecaji na okoliš tijekom korištenja zahvata

Na uređaju za pročišćavanje ne očekuje se pojava buke veće jakosti kod ispravnog rada uređaja, te primjene mjera zaštite od buke. Sve crpke, puhala, te centrifuga će biti smješteni u zatvorene objekte (crpke u crpne stanice i okna, a puhala u zatvorenu građevinu, centrifuga u zasebnu građevinu), te se na navedenim izvorima emisija ne očekuje povećana razina buke. Stoga, ukoliko se mjerenjem razine buke kod probnog puštanja u rad uređaja za pročišćavanje ustanovi da razina buke prelazi dozvoljene vrijednosti prema Pravilniku, biti će potrebno poduzeti dodatne mjere zaštite od buke (npr. postavljanje izolacije od buke).

4.1.12 Otpad

Mogući utjecaji na okoliš tijekom građenja zahvata

Tijekom izvođenja radova u sklopu izgradnje objekata sustava pročišćavanja i odvodnje nastat će različite vrste otpada (građevni otpad, komunalni otpad). Navedeni otpad potrebno je privremeno skladištiti, te predati ovlaštenim osobama na daljnje gospodarenje. U slijedećoj Tablici navode se moguće vrste otpada koje se očekuju prilikom izgradnje zahvata. Nije moguće dati procjenu količine navedenog mogućeg otpada koji će nastati, no ne procjenjuje
se da će biti izrazito značajan ili značajan negativan utjecaj na okoliš već manje značajan negativan utjecaj.

<table>
<thead>
<tr>
<th>Mogući otpad koji će nastati tijekom izgradnje zahvata</th>
<th>Mogući način gospodarenja</th>
<th>Napomena</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beton</td>
<td>predaja ovlaštenoj osobi:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- postupci oporabe, te ponovna upotreba u građevinarstvu</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- odlagalište neopasnog ili inertnog otpada odnosno RCGO</td>
<td></td>
</tr>
<tr>
<td>Mješavina betona, opeke, crijepe/plocica i keramike</td>
<td>predaja ovlaštenoj osobi:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- postupci oporabe, te ponovna upotreba u građevinarstvu</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- odlagalište neopasnog ili inertnog otpada odnosno RCGO</td>
<td></td>
</tr>
<tr>
<td>Zemlja i kamenje</td>
<td>predaja ovlaštenoj osobi:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- postupci oporabe, te ponovna upotreba u građevinarstvu</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- odlagalište neopasnog ili inertnog otpada odnosno RCGO</td>
<td></td>
</tr>
<tr>
<td>Ambalaža od papira i kartona</td>
<td>predaja ovlaštenoj osobi:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- postupci oporabe</td>
<td>Stručna procjena, te potrebna analitička ispitivanja prije odabira načina gospodarenja</td>
</tr>
<tr>
<td>Staklo</td>
<td>predaja ovlaštenoj osobi:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- postupci oporabe</td>
<td></td>
</tr>
</tbody>
</table>

Navedeni utjecaj biti će smanjen propisanim mjerama zaštite (privremeno skladištenja otpada, te predaja ovlaštenoj osobi uz odgovarajuće gospodarenje istim). S obzirom na prepoznate utjecaje, mogući utjecaj od nastanka otpada tijekom pripreme i izgradnje zahvata ocijenjen je kao manje značajan negativan utjecaj

Mogući utjecaji na okoliš tijekom korištenja zahvata

Temeljni cilj pročišćavanja otpadnih voda je ukloniti iz njih nepoželjne sastojke prije konačnog ispuštanja u okoliš. U tom postupku nesumnjivo se stvara niz nusproizvoda koji se moraju skupljati i obraditi prije no što se kontrolirano odlože. Muljevi su po svojem sastavu i količini, obradi i konačnom odlaganju veliki tehnološki i ekonomski problem svakoga javnog sustava odvodnje. Proizvođač otpada ima obvezu ispitivanja otpada i eluata, prije odlaganja, koji obuhvaća sve ključne parametre onečišćenja otpada i parametre eluata za odlaganje na određenu vrstu odlagališta koji su navedeni u Dodatku 3. Pravilnika o načinu i uvjetima odlaganja otpada, kategorijama i uvjetima rada za odlagalište otpada (NN 117/07, 111/11).

U fazi prethodnog čišćenja na grubim i finim rešetkama skupljaju se različite vrste organskih i anorganskih krutina (ostaci hrane, plastika, staklo, metal, tekstil, papir), u pjeskolovima pijesak, šljunak i zemlja, a u mastolovima organska i mineralna ulja i masti. Sve se krutine mogu odlagati na odlagalištima neopasnog otpada, a prikupljena ulja i masti se mogu reciklirati u rafinerijama ili spaliti (putem ovlaštene osobe).

Konačno daljnje gospodarenje otpada s mehaničkog predtremena može se prikazati kao:
- otpad s grube rešetke – krupni komadi drveta, metala, vrećice, limenke i sl. – predaje se na odlagalište neopasnog otpada
- otpad s finog sita se (plastika, čepovi, i sl.) ocjenuje presom presom te ispire u posebnom ispiraču te ponovno ocjenuje i kompaktira do sadržaja suhe tvari od 30 do 40% te predaje se na odlagalište neopasnog otpada
- otpad s pjeskolova se ocjenuje na klasireru te ispire u posebnom ispiraču do sadržaja organske tvari ≤ 3%. Isprani pjesak može se ponovo upotrijebiti za radove u građevinarstvu (nasipavanje, posteljice i sl.) ili se odlaže na odlagalište neopasnog otpada
- izdvojeni flotat mastolova predaje se na zbrinjavanje ovlaštene osobi

- rezultat biološkog pročišćavanja je mulj koji je potrebno dodatno obraditi. Daljnja obrada mulja se uglavnom sastoji u smanjenju sadržaja vode (pa time i volumena mulja). Predviđeno je zgušnjavanje mulja (u zgušnjivaču), te daljnja dehidracija, u osnovi na biljnim gredicama, gdje se ujedno vrši i mineralizacija mulja, a alternativno tehničkim uređajima (centrifugama, trakastim prešama i dr.). Otpadni mulj odvozi se na UPOV Suhopolje.

Osim spomenutog, očekuju se manje količine opasnog otpada (otpadna ulja i maziva, istrošeni filteri i sl.) kao posljedica rada sustava. Sav nastali opasni otpad predava se ovlaštenim osobama.

S obzirom na prepoznate utjecaje, mogući utjecaj od nastanka otpada tijekom korištenja zahvata ocijenjen je kao značajan negativan utjecaj na okoliš.

4.1.13 Akcidenti

Mogući utjecaji na okoliš tijekom građenja zahvata

Tijekom izvođenja radova u sklopu izgradnje objekata sustava pročišćavanja i odvodnje moguće su eventualna onečišćenja površina opasnim tekućinama npr. goriva, ulja ili drugi anorganski spojevi. U slučaju navedenog došlo bi do onečišćenja tla, te eventualno podzemnih voda u neposrednoj podlozi.

S obzirom na prepoznate utjecaje, mogući utjecaj u slučaju ekološke nesreće tijekom pripreme i izgradnje zahvata ocijenjen je kao privremen manje značajan negativan utjecaj.

Mogući utjecaji na okoliš tijekom korištenja zahvata

Tijekom korištenja sustava neželjeni događaj tj. ekološka nesreća može nastupiti uslijed:

- Nekontroliranog izlijevanja otpadne vode kroz okna, preljeve i ostale objekte na kanalizacijskoj mreži, kao posljedica začepljenja kanala i/ili stvaranja uspora u kanalizacijskoj mreži iz raznih razloga (djelomično ili potpuno začepljenje kanala i sl.).

- Nekontroliranog izlijevanja otpadne vode kroz sigurnosne preljeve crpnih stanica (kao posljedica prekida rada crpki uslijed kvara i/ili prekida izvora napajanja električnom energijom).

- Incidenata vozila za prijevoz mulja i dospijeća procjedne otpadne vode u vodonosnike (na lokaciji odlagališta i/ili za vrijeme transporta ugošćenog mulja).

- Incidenata vozila za prijevoz sadržaja septičkih jama iz gravitirajućih naselja i dospijeća procjedne otpadne vode u vodonosnike na lokaciji izjeva takovog sadržaja.

- Ispada iz pogona bilo kojeg dijela uređaja za pročišćavanje (nestanak električne energije).

- Stvaranja metana unutar kolektora uslijed zadržavanja otpadne vode i procesa razgradnje koji je u određenoj mjeri izmiješan sa zrakom eksplozivan.

S obzirom na prepoznate utjecaje, mogući utjecaj otpada tijekom korištenja zahvata ocijenjen je kao značajan negativan utjecaj na okoliš.
4.2 Mogući utjecaji na okoliš nakon prestanka korištenja zahvata

Sustav prikupljanja i odvodnje tj. kanalizacijski kolektor, spojni cjevovod i crpne stanice predstavljaju "trajni" infrastrukturni objekt pa se pod pojmom prestanka korištenja podrazumijeva izmjena istrošenih dijelova sustava. U tom smislu potrebno je stare istrošene dijelove sustava zbrinuti sukladno zakonskom regulativom propisanoj praksi zbrinjavanja vrste otpada kojoj pripadaju.

4.3 Vjerojatnost značajnih prekograničnih utjecaja

Lokacija zahvata udaljena je od rijeke Drave i granice s Madžarskom oko 6 km. UPOV Pitomača i sustav odvodnje neće imati negativnih prekograničnih utjecaja. Radi se o zahvatu koji će smanjiti sadašnje negativne utjecaje. Izgradnjom predviđenog zahvata, te pročišćavanjem otpadnih voda pripadajućih naselja odgovarajućim stupnjem pročišćavanja, eliminirat će se problem onečišćenja podzemnih voda kao i rijeke Drave kao konačnog prijemnika pročišćenih otpadnih voda.

4.4 Mogući značajni utjecaji zahvata na zaštićena područja

Predmetni zahvat neće imati utjecaj na zaštićena područja prema Zakonu o zaštiti prirode (NN 80/13) obzirom da na području obuhvata zahvata nema zaštićenih područja. Ne očekuju se negativni utjecaji na zaštićena područja šireg prostora tijekom rada i održavanja sustava javne odvodnje i pročišćavanja, uz pretpostavku kontinuiranog održavanog ciljelog sustava (kanalizacijske mreže). Očekuje se općenito pozitivan utjecaj na stanje podzemnih i površinskih voda šireg područja zahvata, a time i na prostorno bliska zaštićena područja.

4.5 Mogući značajni utjecaji zahvata na ekološku mrežu Natura 2000

Lokacija izgradnje manjeg dijela zahvata planirana na području ekološke mreže HR2001004 Stari Gradac – Lendava, te da dio zahvata dogradnje sustava odvodnje koji se odnosi na cjevovod graniči sa područjima ekološke mreže HR1000014 Gornji tok Drave (od Donje Dubrave do Terezinog polja) i HR5000013 Drava i činjenicu da je rijeka Drava recipijent sustava odvodnje (kanal Vir kao prijemnik pročišćenih otpadnih voda, povezan sa rijekom Dravom), privremeni i trajni utjecaji zahvata na cjelovitost i ciljeve očuvanja navedenih područja ekološke mreže analizirani su u nastavku.

Uvidom u Izvod iz karte staništa (DZZP, 2012) utvrđuje se da su navedeni zahvati dogradnje sustava odvodnje planirani na sljedećim stanišnim tipovima: „mozaici kultiviranih površina“, „intenzivno obrađivane oranice na komasiranim površinama“, „aktivna seoska područja“, „urbanizirana seoska područja“. Svi navedeni stanišni tipovi su pod velikim antropogenim utjecajima, te ujedinjuju unutar svoje klase rijetke i ugrožene zajednice, te se ne smatraju rijetkim i ugroženim stanišnim tipovima.

Navedeni zahvati su isključivo ograničeni na već antropogeno uvjetovana staništa, te se ne očekuje bitan utjecaj prenamjene zemljišta na cjelovitost i ciljeve očuvanja područja ekološke
mreže HR1000014 Gornji tok Drave (od Donje Dubrave do Terezinog polja), HR5000013 Drava i HR2001004 Stari Gradac – Lendava.

Obzirom da se divlje svojte i stanišni tipovi koji su kvalificirani kao ciljevi očuvanja područja ekološke mreže HR5000013 Drava i HR2001004 Stari Gradac – Lendava ne očekuju na području izvođenja zahvata (vezani su isključivo za vodena staništa npr. cilj očuvanja područja ekološke mreže HR2001004 Stari Gradac – Lendava na kojem se nalazi planirani zahvat je riba crnka *Umbra krameri*) navedeni privremeni utjecaji zahvata na njih se isključuju. Buka rada strojeva privremeno će negativno utjecati na faunu koja nastanjuje područje provođenja zahvata, a time i na ptičje vrste koje su ciljevi očuvanja područja ekološke mreže HR1000014 Gornji tok Drave (od Donje Dubrave do Terezinog polja) - međunarodno važnog područja za ptice. Navedeni utjecaj povećane razine buke na ciljeve očuvanja navedenog područja ekološke mreže ocjenjuje se kao kratkotrajan i prolazan, te ograničen na vrijeme radova tijekom dana, kada će se koristiti vozila i mehanizacija.

Očekuje se umjereno (prihvatljivo) privremeno i lokalno onečišćenje zraka prašinom i ispušnim plinovima koje neće značajnije utjecati na ornitofaunu, ciljeve očuvanja navedenog područja ekološke mreže HR1000014 Gornji tok Drave (od Donje Dubrave do Terezinog polja).

Pravilno funkcioniranje zahvata odvodnje i uređaja za pročišćavanje otpadnih voda utječe i na šire područje predmetnog zahvata. Obzirom da je planirano adekvatno korištenje sustava odvodnje i uređaja za pročišćavanje otpadnih voda, šire djelovanje zahvata u smislu prijenosa onečišćenja (vodama, tlom ili zrakom) se isključuje.

Dogradnja uređaja za pročišćavanje trajno će pozitivno utjecati na okoliš općenito (prvenstveno na kanal Vir, te rijeku Dravu), pa se i trajni utjecaj predmetnog zahvata na ciljeve očuvanja područja ekološke mreže na lokalnim ili regionalnim razinama. U blizini predmetnog zahvata ne nalaze se drugi postojeći i planirani zahvati čiji bi utjecaji bili značajni pri likom sagledavanja kumulativnih utjecaja s predmetnim zahvatom.

Potvrda o ocjeni prihvatljivosti planiranog zahvata za ekološku mrežu (KLASA: 612-07/12-01/25; UR.BROJ: 2189/1-08/1-12-04, 31.7.2012.) (PRILOG 6.3) na temelju izrađenog

Zahtjeva za prethodnu ocjenu utjecaja zahvata za ekološku mrežu - sustav odvodnje i pročišćavanja otpadnih voda Aglomeracije "Pitomaca" (INSTITUT IGH d.d., 2012.), utvrđuje
da se isključuje mogućnost značajnih negativnih utjecaja na područja ekološke mreže, te se prema mišljenju Državnog zavoda za zaštitu prirode smatra da je ovaj zahvat prihvatljiv.

Procjenjuje se da predviđeni zahvat, svojom lokacijom i obuhvatom ne može narušiti cjelovitost područja ekološke mreže u čijoj se blizini nalazi, a može doprinijeti kvaliteti voda, odnosno staništa. Obzirom na trasiranje zahvata (kolektori se polažu u trup ili bankine postojećih prometnica), navedeni zahvat nema negativnog utjecaja.

4.6 Opis obilježja utjecaja

S obzirom da se radi o zahvatu čiji je direktni doprinos poboljšanju stanja okoliša (podzemnih i površinskih voda, mora i tla), te indirektno poboljšanju života okolnog stanovništva, nije prisutno smanjenje vrijednosti okoliša već njegovo povećanje uslijed očuvanja prirodnih resursa pitke vode, zaštite kakvoće, te time i ekosustava vodenih tokova.

Također, ne očekuju se negativni utjecaji na zaštićena područja šireg prostora tijekom rada i održavanja sustava prikupljanja, odvodnje i pročišćavanja otpadnih voda, uz pretpostavku kontinuiranog održavanja cijelog sustava. Očekuje se općenito pozitivan utjecaj na stanje podzemnih i površinskih voda šireg područja zahvata.

Direktna korist za društvenu zajednicu je očuvanje crpilišta pitke vode šireg područja, s obzirom na rješavanje problematike prikupljanja, pročišćavanja ispuštanja komunalnih otpadnih voda kao strateškog cilja zaštite voda Republike Hrvatske sukladno Strategiji i Programu prostornog uređenja RH, Strategiji upravljanja vodama RH, Strategiji održivog razvitka RH i drugim planskim dokumentima.

Uz primjenu mjera zaštite i programa praćenja stanja okoliša, neće biti značajnog gubitka za okoliš u odnosu na ukupnu korist za društvo i okoliš koji se postiže gradnjom sustava odvodnje i uređaja za pročišćavanje voda.

Doseg utjecaja

Zbog malih razlika doseg mogućih utjecaja na okolno područje neće biti značajan.

Prekogranična obilježja utjecaja

Zbog malih razlika prekograničnih utjecaja nema.

Snaga i složenost utjecaja

Iako postoji razlika u angažiranosti mehanizacije, snaga i složenost utjecaja neće biti značajni.

Vjerojatnost utjecaja

Zbog malih razlika vjerojatnost utjecaja neće biti značajna.

Trajanje i učestalost utjecaja

Iako postoji razlika u angažiranosti mehanizacije, trajanje i učestalost utjecaja neće biti značajna.
5. PRIJEDLOG MJERA ZAŠTITE OKOLIŠA I PRAĆENJE STANJA OKOLIŠA AKO SU RAZMATRANI

Procijenjeno je da će izgradnja predloženog zahvata tj. sustava javne odvodnje na području aglomeracije Pitomača i uređaja za pročишćavanje 2. stupnja, imati pretežno pozitivne učinke na okoliš. Izgradnja sustava javne odvodnje i priključivanje sada nepriključenog stanovništva smanjiti će zagađenje podzemnih voda iz septičkih jama. Također, izgradnja UPOV-a 2. stupnja smanjiti će koncentracije onečišćenja koje se sada ispušta iz postojećeg UPOV-a 1. stupnja i time smanjiti onečišćenje recipijenta, kanala Vir i nizvodnog područja tj. vodnog područja rijeke Dunav, koje je proglašeno osjetljivim područjem.

5.1 Mjere zaštite okoliša tijekom građenja zahvata

Ovim Elaboratom analizirani su mogući utjecaji zahvata na okoliš koji se mogu javiti tijekom građevinskih radova na izgradnji sustava javne odvodnje na području aglomeracije Pitomača i uređaja za pročišćavanje. Temeljem definiranih i analiziranih utjecaja ne predlažu se dodatne mjere zaštite okoliša tijekom izgradnje zahvata obzirom da su mjere koje je potrebno poduzeti temeljem prepoznatih utjecaja one koje su propisane zakonskom regulativom (zakoni, pravilnici, uredbe i sl.) uvažavajući i primjenjujući pravila struke.

5.2 Mjere zaštite okoliša tijekom korištenja zahvata

Elaboratom zaštite okoliša analizirani su mogući utjecaji zahvata na okoliš koji se mogu javiti tijekom korištenja sustava javne odvodnje na području aglomeracije Pitomača i uređaja za pročišćavanje. Temeljem definiranih i analiziranih utjecaja ne predlažu se dodatne mjere zaštite okoliša tijekom korištenja planiranih zahvata obzirom da su mjere koje je potrebno poduzeti temeljem prepoznatih utjecaja one koje su propisane zakonskom regulativom (zakoni, pravilnici, uredbe i sl.) uvažavajući i primjenjujući pravila struke. Ne predlažu se mjere zaštite tijekom korištenja.

5.3 Mjere zaštite okoliša nakon prestanka korištenja zahvata

Ne predlažu se mjere zaštite okoliša nakon prestanka korištenja zahvata, jer je kanalizacijski kolektor, spojni cjevovod i crpne stanice predviđen kao trajni objekti, te nisu potrebne nikakve dodatne mjere zaštite okoliša za razdoblje eventualnog prestanka njihovog korištenja.
6. IZVORI PODATKA

Prostorno planska dokumentacija

- Prostorni plan Virovitičko-podravske županije (Službeni glasnik Virovitičko – podravske županije broj 7A/00., 1/04., 5/07., 1/10., 2/12., 4/12, 2/13., 3/13)
- Prostorni plan uređenja općine Pitomača (Službene novine općine Pitomača 3/03, 1/09, 7/13, 9/13 i 5/15)
- Urbanistički plan uređenja dijela naselja Pitomača (Službene novine općine Pitomača 1/10))

Projektna dokumentacija

- Koncepcijsko rješenje sustava odvodnje i pročišćavanja otpadnih voda Općine Pitomača (Hidroprojekt-ing, 2009.),
- Idejni projekt rekonstrukcije i dogradnje uređaja za pročišćavanje otpadnih voda u Pitomači (Hidroprojekt-ing, 2009.).
- Idejni projekt izgradnje kanalizacije aglomeracije Pitomača (Prostor d.o.o., 2012.),
- Studija izvodljivosti (Institut IGH d.d., 2012.)
- Glavni projekt izgradnja kanalizacije aglomeracije Pitomača - faza I. izrađen od strane tvrtke Prostor d.o.o., rujan 2014.g. na temelju kojeg je u proceduri izdavanje Građevinske dozvole.
- Glavni projekt: sustav odvodnje otpadnih voda Pitomače, kanalizacijska mreža u Vinogradskoj ulici, Dravskoj ulici i ulici Petra krešimira IV. izrađen od strane tvrtke Hidropjekt-ing projektiranje d.o.o, srpanj 2008.g. na temelju kojeg je izdana Potvrda glavnog projekta
- Glavni projekt izgradnja kanalizacije naselja Stari Gradac izrađen od strane tvrtke Prostor d.o.o. iz travanj 2014.g. na temelju kojeg je u proceduri izdavanje Građevinske dozvole
- Idejni projekt sustava odvodnje i pročišćavanja otpadnih voda, rekonstrukcija i dogradnja uređaja za pročišćavanje otpadnih voda u Pitomači izrađen od strane tvrtke Hidroprojektaying d.o.o. Zagreb iz siječnja 2013.g. na temelju kojeg je izdana Lokacijska dozvola
- Studija izvodljivosti - Sustav odvodnje i pročišćavanje otpadnih voda aglomeracije Pitomača, Hidroing d.o.o. – u izradi

Ostalo

- Topografske karte mj. 1 : 25000,
- HOK mj. 1 : 5000
- Oikon (2004): Karta staništa RH. Ministarstvo zaštite okoliša, prostornog uređenja i graditeljstva, Zagreb
Državni zavod za zaštitu prirode: Web baza podataka: Ekološka mreža - Natura2000 i Zaštićena područja prema zakonu o zaštiti prirode. - http://www.dzzp.hr/

Plan upravljanja vodnim područjima (Hrvatske vode, Zagreb, lipanj 2013) – Dodatak I. Analiza značajki vodnog područja rijeke Dunav

Okvirna direktna o vodama Europske unije (ODV) (Direktiva 2000/60/EC)

IUCN Red List - http://www.iucnredlist.org

Katalog zaštićenih i strogo zaštićenih vrsta u Republici Hrvatskoj - http://zasticenevrste.azo.hr/

Zakon o financiranju vodnog gospodarstva (NN 153/09 sa svim izmjenama i dopunama)

Zakon o vodama (NN 153/09 sa svim izmjenama i dopunama)