ELABORAT ZAŠTITE OKOLIŠA
ZA POSTUPAK OCJENE O POTREBI
PROCJENE UTJECAJA ZAHVATA NA OKOLIŠ

IZGRADNJA SUNČANE ELEKTRANE
ORLEC TRINKET - ZAPAD

Nositelj zahvata:
Javna ustanova „Zavod za prostorno uređenje
Primorsko – goranske županije“

Izrađivač elaborata:
Ekotop d.o.o., Zagreb

OŽUJAK, 2018.
<table>
<thead>
<tr>
<th>Vrsta dokumentacije:</th>
<th>ELABORAT ZAŠTITE OKOLIŠA ZA OCJENU O POTREBI PROCJENE UTJECAJA ZAHVATA NA OKOLIŠ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zahvat:</td>
<td>Izgradnja sunčane elektrane Orlec Trinket - zapad</td>
</tr>
<tr>
<td>Nositelj zahvata:</td>
<td>JAVNA USTANOVA „ZAVOD ZA PROSTORNO UREĐENJE PRIMORSKO-GORANSKE ŽUPANIJE“</td>
</tr>
<tr>
<td></td>
<td>Splitska 2/II, 51 000 Rijeka</td>
</tr>
<tr>
<td></td>
<td>OIB: HR08444936466</td>
</tr>
<tr>
<td></td>
<td>Odgovorna osoba: Adam Butigan, mag.ing.geod., ravnatelj</td>
</tr>
<tr>
<td></td>
<td>Telefon: 051 / 351 – 772</td>
</tr>
<tr>
<td></td>
<td>E-mail: adam.butigan@pgz.hr</td>
</tr>
<tr>
<td>Izrađivač elaborata:</td>
<td>d.o.o. za zaštitu okoliša i projektiranje</td>
</tr>
<tr>
<td></td>
<td>Hektorovićeva ulica 2, 10 000 Zagreb</td>
</tr>
<tr>
<td></td>
<td>e-mail: ekotop@ekotop-zastita-okolisa.hr</td>
</tr>
<tr>
<td></td>
<td>tel: +385 1 4840 940</td>
</tr>
<tr>
<td>Odgovorna osoba izrađivača:</td>
<td>Robert Španić, dipl. ing. biol.</td>
</tr>
<tr>
<td></td>
<td>Direktor</td>
</tr>
<tr>
<td>Ovlašteni voditelj izrade elaborata:</td>
<td>Robert Španić, dipl. ing. biol.</td>
</tr>
<tr>
<td>Ovlašteni zaposleni stručnjaci:</td>
<td>Domagoj Švaljek, struč. spec. ing. aedif.</td>
</tr>
<tr>
<td></td>
<td>Martina Cvitković, mag. geog.</td>
</tr>
<tr>
<td></td>
<td>Dario Rupić, dipl. ing. prom.</td>
</tr>
<tr>
<td>Ostali zaposleni suradnici:</td>
<td>Tihana Vilović, mag. oecol.</td>
</tr>
<tr>
<td>Vanjski suradnici:</td>
<td>Vedran Šegota, dipl. ing. biol.</td>
</tr>
<tr>
<td></td>
<td>(vanjski suradnik, botaničar)</td>
</tr>
<tr>
<td>Mjesto i datum izrade elaborata:</td>
<td>Zagreb, ožujak, 2018.</td>
</tr>
</tbody>
</table>
SADRŽAJ:

1. UVOD...1
 1.1. Svrha izrade elaborata ..1

2. PODACI O ZAHVATU I OPIS OBILJEŽJA ZAHVATA ..6
 2.1. Opis obilježja zahvata ..6
 2.2. Idejno rješenje SE Orlec Trinket – zapad ..7
 2.3. Opis tehnološkog procesa ...23
 2.4. Popis vrsta i količina tvari koje ulaze u tehnološki proces i koje ostaju nakon tehnološkog procesa te emisija u okoliš ...23
 2.5. Popis drugih aktivnosti potrebnih za realizaciju zahvata23
 2.6. Varijantna rješenja zahvata ..23

3. PODACI O LOKACIJI I OPIS LOKACIJE ZAHVATA ..24
 3.1. Položaj zahvata u prostoru ...24
 3.2. Odnos zahvata prema postojećim i planiranim zahvatima25
 3.3. Opis stanja sastavnica okoliša na koje bi zahvat mogao imati značajan utjecaj ...33
 3.3.1. Stanovništvo i naseljenost ..33
 3.3.2. Kvaliteta zraka ..35
 3.3.3. Klimatološka obilježja ..36
 3.3.4. Hidrološka i hidrogeološka obilježja ..40
 3.3.5. Geološka i seizmološka obilježja ...45
 3.3.6. Geomorfološka obilježja ...47
 3.3.7. Pedološka obilježja ..48
 3.3.8. Bioraznolikost i zaštita prirode ...48
 3.3.9. Krajobrazna obilježja ...61
 3.3.10. Kulturno – povijesna baština ...62
 3.3.11. Gospodarska obilježja ...63

4. OPIS MOGUĆIH ZNAČAJNIH UTJECAJA ZAHVATA NA OKOLIŠ ..65
 4.1. Sažeti opis mogućih utjecaja zahvata na sastavnice okoliša65
 4.1.1. Utjecaji na stanovništvo i ljudsko zdravlje ..65
 4.1.2. Utjecaji na kvalitetu zraka ..65
 4.1.3. Utjecaji na klimu ...65
 4.1.4. Utjecaji na vode ...71
 4.1.5. Utjecaji na tlo ..72
 4.1.6. Utjecaji na bioraznolikost ..73
 4.1.7. Utjecaji na krajobrazne vrijednosti ..76
 4.1.8. Utjecaji na kulturno - povijesnu baštinu ..76
4.1.9. Utjecaji na gospodarstvo ... 77
4.2. Opterećenje okoliša .. 77
 4.2.1. Buka ... 77
 4.2.2. Otpad ... 78
 4.2.3. Promet ... 80
 4.2.4. Svjetlosno onečišćenje ... 80
4.3. Vjerojatnost značajnih prekograničnih utjecaja ... 81
4.4. Sažeti opis mogućih značajnih utjecaja zahvata na zaštićena područja 81
4.5. Sažeti opis mogućih značajnih utjecaja zahvata na ekološku mrežu 82
 Kumulativni utjecaj SE Orlec Trinket - zapad i SE Orlec Trinket - istok 82
4.6. Opis obilježja utjecaja ... 84
5. PRIJEDLOG MJERA ZAŠTITE OKOLIŠA I PRAĆENJE STANJA OKOLIŠA 86
6. IZVORI PODATAKA ... 92
7. PRILOZI ... 98

POPIS KRATICA KORIŠTENIH U ELABORATU:

SE – sunčana elektrana
FN – fotonaponski modul
TS – trafo-stanica
MTS – montažna trafo-stanica
KTS - kontejnerska trafostanica
RS - rasklopištė
NN - niskonaponski
SN - srednjenaponski
1. UVOD

1.1. Svrha izrade elaborata

Zakonom o zaštiti okoliša (NN 80/13, 153/13 i 78/15) i Uredbom o procjeni utjecaja zahvata na okoliš (NN 61/14 i 3/17, u daljnjem tekstu: Uredba) propisano je da nositelj zahvata, kada utvrdi da se njegov zahvat nalazi na popisu zahvata iz Priloga II. ili Priloga III. Uredbe, može zatražiti od nadležnog tijela provedbu postupaka ocjene o potrebi procjene utjecaja zahvata na okoliš ili može odmah pristupiti izradi studije o utjecaju na okoliš.

Sukladno Prilogu II. Uredbe Sunčana elektrana „Orlec Trinket – zapad“, kao samostojni objekt, na popisu je zahvata za koje se provodi ocjena o potrebi procjene utjecaja zahvata na okoliš, a za koje je nadležno Ministarstvo, a potpada pod točku 2.4. „Sunčane elektrane kao samostojni objekti“.

Sunčana elektrana „Orlec Trinket – zapad“ planira se izgraditi u središnjem dijelu otoka Cresa, na lokaciji oko 2 km sjeverozapadno od naselja Orlec, zapadno od državne ceste D100 Porozina – Cres – Mali Lošinj te neposredno južno od lokalne ceste LC58093 Valun - D100. Područje predmetnog zahvata administrativno pripada naselju Zbišina pod Gradom Cresom u Primorsko-gorskoj županiji.

Površina namijenjena za smještaj sunčanih panela, platoa trafostanice i pomoćnih građevina iznosi oko 2,4 ha. Računajući i prostor između panela obuhvata zahvata iznosi 15,7 ha, a šira zona obuhvata iznosi 17,9 ha što je sukladno PP PGŽ u kojem je predmetna elektrana predviđena i určana u kartografu. Površina obuhvata je predviđena na dijelovima katastarskih čestica 3230/6, 3235, 3239, 3242, 3243/1, 3243/2, 3243/3, 3243/4 k.o. Orlec. Gradnja sunčane elektrane predviđena je na poljoprivrednom zemljištu (makijom zarašteni travnjaci – pašnjaci), bez vodnih tijela, sa šumskim sastojinama u udolima izvan površina predviđenih za postavljane solarnih panela. Prema prostornim planovima lokacija je prema namjeni i korištenju označena u najvećem dijelu kao obradivo tlo, pašnjaci i ostalo, dok su na manjim dijelovima obuhvata zahvata označene gospodarske šume.

Procijenjena instalirana snaga sunčane fotonaponske elektrane na predmetnim površinama ovisno o konkretno korišt enim fotonaponskim modulima i tehničkom rješenju elektrana iznosi 4,14 MW.

Javna ustanova Zavod za prostorno uređenje Primorsko-gorske županije, kao nositelj zahvata, pokrenula je 2014. godine radnju projektne dokumentacije u cilju ishodištenja lokacijske dozvole za Sunčanu elektrana „Orlec Trinket – istok“. Sukladno Uredbi za ovu sunčanu elektrana proveden je upravni postupak Ocjena o potrebi procjene utjecaja zahvata na okoliš u Ministarstvu zaštite okoliša i prirode.

Ministarstvo zaštite okoliša i energetike donijelo je 28. studenog 2016. godine Rješenje o prihvatljivosti za ekološku mrežu uz primjenu zakonom propisanih i rješenjem utvrđenih mjera ublažavanja negativnih utjecaja na ciljeve očuvanja i cjelovitost ekološke mreže te programa praćenja i izvješćivanja o stanju ciljeva očuvanja i cjelovitosti područja ekološke mreže.

U 2017. godini izrađeno je idealno rješenje za sunčanu elektrana „Orlec Trinket – zapad“. Slijedom navedenog nositelj zahvata je ugovorio izradu ovog elaborata zaštite okoliša za ocjenu o potrebi procjene utjecaja na okoliš s tvrtkom ovlaštenom za stručne poslove zaštite okoliša.

Suglasnost za obavljanje stručnih poslova zaštite okoliša Ovlaštenika Ekotop d.o.o. prikazana je u nastavku.
Elaborat zaštite okoliša za ocjenu o potrebi procjene utjecaja zahvata na okoliš

REPUBLIKA HRVATSKA
MINISTARSTVO ZAŠTITE OKOLIŠA
I ENERGETIKE
10000 Zagreb, Radnička cesta 80
tel: +385 1 3717 111, faks: +385 1 3717 149
Uprava za procjenu utjecaja na okoliš i
održivo gospodarenje otpadom
Sektor za procjenu utjecaja na okoliš
i industrijsko onečišćenje
KLASA: UP/1 351-02/17-08/21
URBROJ: 517-06-2-1-1-17-2

Ministarstvo zaštite okoliša i energetike na temelju odredbe članka 42. Zakona o zaštiti okoliša („Narodne novine“, broj 80/13, 153/13 i 78/15), povodom zahtjeva pravne osobe EKOTOP d.o.o., Hektorovićeva 2., Zagreb, za obavljanje stručnih poslova zaštite okoliša iz
područja zaštite prirode, donosi

SUGLASNOST

I. Pravnoj osobi EKOTOP d.o.o., Hektorovićeva 2., Zagreb, izdaje se suglasnost za
obavljanje stručnih poslova zaštite okoliša:
1. Izrada studija o značajnom utjecaju strategije, plana ili programa na okoliš (u daljnjem
tekstu: strateška studija) uključujući i dokumentaciju potrebnu za ocjenu o potrebi
strateške procjene te dokumentaciju za određivanje sadržaja strateške studije.
2. Izrada studija o utjecaju zahvata na okoliš, uključujući i dokumentaciju za provedbu
postupka ocjene o potrebi procjene utjecaja zahvata na okoliš te dokumentacije za
određivanje sadržaja studije o utjecaju na okoliš.
9. Izrada programa zaštite okoliša
10. Izrada izvješća o stanju okoliša
12. Izrada elaborata o zaštiti okoliša koji se odnose na zahvate za koje nije propisana obveza
procjene utjecaja na okoliš.
23. Obavljanje stručnih poslova za potrebe Registra onečišćavanja okoliša
25. Izrada elaborata o usklađenosti proizvoda s mjerilima o postupku ishodenja znaka zaštite
okoliša „Prijatelj okoliša“ i znaka EU Ecolabel
II. Suglasnost iz točke I. ove izreke izdaje se na razdoblje od tri godine.
III. Ovo rješenje upisuje se u očevodnik izdanih suglasnosti za obavljanje stručnih poslova
zaštite okoliša koji vodi Ministarstvo zaštite okoliša i energetike.

Stranica 1 od 3
Elaborat zaštite okoliša za ocjenu o potrebi procjene utjecaja zahvata na okoliš

IV. Uz ovo rješenje prileži popis zaposlenika ovlaštenika: voditelja stručnih poslova u zaštiti okoliša i stručnjaka.

O b r a z l o ž e n j e

Uz zahtjev EKOTOP d.o.o., je sukladno članku 20. Pravilnika o uvjetima za izdavanje suglasnosti pravnim osobama za obavljanje stručnih poslova zaštite okoliša („Narodne novine“, broj 57/10) (u daljnjem tekstu: Pravilnik), dostavio sljedeće dokaze: Izvadak iz sudskega registra; preslike diplom i potvrde Hrvatskog zavoda za mirovinsko osiguranje za zaposlene stručnjake: Roberta Španića, dipl. ing. biol., Domagoj Švaljek, struć.specing,adifix., Daria Rupić, mag.ing.traff. i Martinu Cvitković mag.geog., opis radnog iskustva zaposlenika; popis radova u čijoj su izradi sudjelovali uz preslike naslovnih stranica iz kojih je razvidno svojstvo u kojem su sudjelovali; ovjerenu izjavu o raspolaganju radnim prostorom i odgovarajućim opremom te kopiju ugovora o zakupu poslovnog prostora.

Ovlaštenik EKOTOP d.o.o je naveo činjenice i podnio dokaze na podlozi kojih se moglo utvrditi stanje stvari.

Zahtjev za obavljanje stručnih poslova zaštite okoliša iz točke I. izreke ovog rješenja osnovan. Ove činjenice utvrđene su u vidi dokumentaciju svakog pojedinog stručnjaka, popis radova u kojima su sudjelovali, popis radova i naslovnice stranica, a koje stranka navodi kao relevantne. Uz to, stranka je uz svoj zahtjev dostavila dokaze iz kojih je očito da su zaposlenici sudjelovali kao vanjski suradnici i suradnici u timu u izradi dokumentacije za koju se traži suglasnost.

Slijedom naprijed navedenog prema članku 42. stavku 3. Zakona o zaštiti okoliša suglasnost se izdaje s rokom važnosti kako stoji u točci II. izreke ovoga rješenja.

Točka III. izreke ovoga rješenja temeljena je na odredbi članku 40. stavka 8. Zakona o zaštiti okoliša.

Točka IV. izreke ovoga rješenja temelji se na naprijed izloženom utvrđenom činjeničnom stanju.

U P U T A O P R A V N O M L IJEKU:
Ovo rješenje je izvršno u upravnom postupku i protiv njega se ne može izjaviti žalba, ali se može pokrenuti upravni spor. Upravni spor pokreće se tužbom Upravnog sudu u Zagrebu, Avenija Dubrovnik 6, u roku 30 dana od dana dostave ovog rješenja. Tužba se predaje navedenom upravnom sudu neposredno u pisanom obliku, usmeno na zapisnik ili se šalje poštom, odnosno dostavlja elektronički.

Stranica 2 od 3

Izgradnja sunčane elektrane Orlec Trinket - zapad
Upravna pristojba na zahtjev i ovo rješenje naplaćena je državnim biljezima sukladno Zakonu o upravnim pristojbama („Narodne novine“, broj 115/16).

Dostaviti:
1. EKOTOP d.o.o., Hektorovićeva 2., Zagreb, (R, s povratnicom!)
2. Uprava za inspekcijske poslove, ovdje
3. Očevidnik, ovdje
POPIŠ

Zaposlenika ovlaštenika: EKOTOP d.o.o., Hektorovićeva 2, Zagreb, slijedom kojih je ovlaštenik ispuni propisane uvjete za izdavanje suglasnosti za obavljanje stručnih poslova zaštite okoliša sukladno rješenjima Ministarstva

KLASA: UP/I 351-02/17-08/21; URBROJ: 517-06-2-1-17-2 od 7. srpnja 2017. godine.

<table>
<thead>
<tr>
<th>STRUČNI POSLOVI ZAŠTITE OKOLIŠA</th>
<th>VODITELJ STRUČNIH POSLOVA</th>
<th>ZAPOSLENI STRUČNJACI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Izrada studija o značajnom utjecaju strategije, plana ili programa na okoliš (strateška studija) uključujući i dokumentaciju potrebnu za ocjenu u potrebi strateške procjene te dokumentaciju za određivanje sadržaja strateške studije</td>
<td>Robert Španić, dipl.ing.biol. Donagoj Švaljek, struč.+spec.ing.acolif.</td>
<td>Martina Cvitković, mag.geog. Dario Rupić, mag.ing.triff.</td>
</tr>
<tr>
<td>2. Izrada studija o utjecaju zahvata na okoliš, uključujući i dokumentaciju za provedbu postupka ocjene o potrebi procjene utjecaja zahvata na okoliš te dokumentacije za određivanje sadržaja studije o utjecaju na okoliš</td>
<td>voditelji navedeni pod točkom 1.</td>
<td>stručnjaci navedeni pod točkom 1.</td>
</tr>
<tr>
<td>3. Izrada programa zaštite okoliša</td>
<td>voditelji navedeni pod točkom 1.</td>
<td>stručnjaci navedeni pod točkom 1.</td>
</tr>
<tr>
<td>4. Izrada izvješća o stanju okoliša</td>
<td>voditelji navedeni pod točkom 1.</td>
<td>stručnjaci navedeni pod točkom 1.</td>
</tr>
<tr>
<td>5. Izrada elaborata zaštit okoliša koji se odnose na zahvate za koje nije prepisana obveza procjene utjecaja na okoliš</td>
<td>voditelji navedeni pod točkom 1.</td>
<td>stručnjaci navedeni pod točkom 1.</td>
</tr>
<tr>
<td>7. Izrada elaborata o usklađenosti proizvoda s njišrimima u postupku ishodištena znaka zaštite okoliša "Prijašnji okoliš" i znaka EU Ecolabel</td>
<td>voditelji navedeni pod točkom 1.</td>
<td>stručnjaci navedeni pod točkom 1.</td>
</tr>
</tbody>
</table>
2. PODACI O ZAHVATU I OPIS OBILJEŽJA ZAHVATA

2.1. Opis obilježja zahvata

Sunčana elektrana „Orlec – Trinket – zapad“ planira se izgraditi u središnjem dijelu otoka Cresa, na lokaciji oko 2 km sjeverozapadno od naselja Orlec, zapadno od državne ceste D100 Porozina – Cres – Mali Lošinj te neposredno južno od lokalne ceste LC58093 Valun - D100.

Sunčana elektrana planira se izgraditi koristeći fotonaponsku tehnologiju, odnosno fotonaponske module i izmjenjivače. Površina namijenjena za smještaj sunčanih panela, platoa trafostanice i pomoćnih građevina iznosi oko 2,4 ha. Računajući i prostor između panela obuhvat zahvata iznosi 15,7 ha, a šira zona obuhvat iznosi 17,9 ha (slike 2.2.1. i 2.2.2.) što je sukladno PP PGŽ kojim je propisana maksimalna površina obuhvata od 31 ha. Površina obuhvata je pređivena na dijelovima katastarskih čestica 3230/6, 3235, 3239, 3242, 3243/1, 3243/3, 3243/4, 3243/5 k.o. Orlec.

<table>
<thead>
<tr>
<th>Katastarska čestica</th>
<th>Površina katastarske čestice (m²)</th>
<th>Površina obuhvata zahvata (m²)</th>
<th>Površina građevine (m²)</th>
<th>Izgrađenost parcele (kig)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3230/6</td>
<td>2169</td>
<td>914,37</td>
<td>0</td>
<td>0,000</td>
</tr>
<tr>
<td>3235</td>
<td>12973</td>
<td>8889,22</td>
<td>1333</td>
<td>0,150</td>
</tr>
<tr>
<td>3239</td>
<td>11196</td>
<td>5780,49</td>
<td>605</td>
<td>0,105</td>
</tr>
<tr>
<td>3242</td>
<td>6096</td>
<td>996,10</td>
<td>561</td>
<td>0,563</td>
</tr>
<tr>
<td>3243/1</td>
<td>83725</td>
<td>8499,46</td>
<td>4081</td>
<td>0,221</td>
</tr>
<tr>
<td>3243/2</td>
<td>669</td>
<td>669,00</td>
<td>199</td>
<td>0,297</td>
</tr>
<tr>
<td>3243/3</td>
<td>1345</td>
<td>1345,00</td>
<td>365</td>
<td>0,271</td>
</tr>
<tr>
<td>3243/4</td>
<td>1061</td>
<td>1061,00</td>
<td>229</td>
<td>0,216</td>
</tr>
<tr>
<td>3243/5</td>
<td>434371</td>
<td>118737,71</td>
<td>16583</td>
<td>0,140</td>
</tr>
</tbody>
</table>

Ukupna površina obuhvata zahvata: 156892,35 m²

Ukupna izgrađenost površine čestice k.č. 3235, k.o. Orlec iznosit će cca 1333 m².
Ukupna izgrađenost površine čestice k.č. 3239, k.o. Orlec iznosit će cca 605 m².
Ukupna izgrađenost površine čestice k.č. 3242, k.o. Orlec iznosit će cca 561 m².
Ukupna izgrađenost površine čestice k.č. 3243/1, k.o. Orlec iznosit će cca 4081 m².
Ukupna izgrađenost površine čestice k.č. 3243/2, k.o. Orlec iznosit će cca 199 m².
Ukupna izgrađenost površine čestice k.č. 3243/3, k.o. Orlec iznosit će cca 365 m².
Ukupna izgrađenost površine čestice k.č. 3243/4, k.o. Orlec iznosit će cca 229 m².
Ukupna izgrađenost površine čestice k.č. 3243/5, k.o. Orlec iznosit će cca 16583 m².

Ukupni koeficijent izgrađenosti (kig) čestice k.č. 3235, k.o. Orlec iznosit će 0,15.
Ukupni koeficijent izgrađenosti (kig) čestice k.č. 3239, k.o. Orlec iznosit će 0,105.
Ukupni koeficijent izgrađenosti (kig) čestice k.č. 3242, k.o. Orlec iznosit će 0,563.
Ukupni koeficijent izgrađenosti (kig) čestice k.č. 3243/1, k.o. Orlec iznosit će 0,221.
Ukupni koeficijent izgrađenosti (kig) čestice k.č. 3243/2, k.o. Orlec iznosit će 0,297.
Ukupni koeficijent izgrađenosti (kig) čestice k.č. 3243/3, k.o. Orlec iznosit će 0,271.
Ukupni koeficijent izgrađenosti (kig) čestice k.č. 3243/4, k.o. Orlec iznosit će 0,216.
Ukupni koeficijent izgrađenosti (kig) čestice k.č. 3243/5, k.o. Orlec iznosit će 0,14.

U ovom slučaju koeficijent iskoristivosti (kis) je jednak koeficijentu izgrađenosti građevinske čestice (kig) i svi koeficijenti zadovoljavaju prostorno planske odredbe prema kojima je dopušten kig=0,7, a dopušteni kis=1.
Granica predmetnog područja je nepravilnog, geometrijskog oblika te se pruža u smjeru S-J po prostoru blage udoline.

Idejnim rješenjем predviđa se formiranje posebne katastarske čestice za izgradnju susretnog postrojenja u sklopu izgradnje priključka na mrežu HEP ODS. Predmetna katastarska čestica formirat će se parcelacijom katastarskih čestice 3239 i 3242 i bit će predviđene površine 30x30 m odnosno 900 m².

Procijenjena instalirana snaga sunčane fotonaponske elektrane na predmetnim površinama ovisno o konkretno korištenim fotonaponskim modulima i tehničkom rješenju elektrana iznosi 4,14 MW, a maksimalno dopuštena snaga sunčane elektrane sukladno PP PGŽ iznosi 10 MW.

2.2. Idejno rješenje SE Orlec Trinkel – zapad

2.2.1. Smještaj građevine na parceli

Smještaj SE Orlec – Trinkel – Zapad definiran je karakteristikama fotonaponskih polja, postojećeg terena tako da se izbjegne postavljanje polja FN modula na ograđena područja (lokalno: dolove), položajem postojeće lokalne ceste LC58093 Valun – D100 na koju se spaja te uz izbjegavanje možetih rušenja ili premještanje kamenih međa (suhozida).

Cijeno postrojenje s pratećim sadržajem i objektima smješteno je dužom osi sjever-jug.

Pristupi poljima sunčane elektrane izvest će se preko novo projektiranih internih makadamskih prilaza.

Predviđa se ograditi plato sunčane elektrane neupadljivom, prozračnom ogradom sivo-bijele boje (boje kamena) s omogućenim prolazima za male životinje ukupne duljine cca 2865 m.

Zaštitna žičana ograda se postavlja na metalne pocinčane stupove pobijene u tlo. Ograda se postavlja na udaljenost od min. 5 m u odnosu na prikazane građevine idejnim rješenjem (fotonaponski moduli i trafostanice) osim na mjestima gdje makadamski prilazi to ne dopuštaju.

Visina ograda mora biti min. 2 m te podignuta za 5 cm radi omogućavanja nesmetanog prolaza malih životinja unutar ograde sunčane elektrane.

Kolni ulazi su krilni s obaveznom uzemljenjem svih metalnih dijelova.

Transformatorske stanice su u građevnom smislu slobodnostojići, tipski kompaktni tvornički dogotovljeni objekti, tipa MTS 12(24) – 1000 kVA, tlocrtnih dimenzija 328 x 418 cm i tipa KTS 12(24) – 630 kVA, tlocrtnih dimenzija 214 x 418 cm, izrađeni kao armirano betonske građevine. Stanice imaju jedna metalna dvokrilna vrata koja služe za unos energetskog transformatora i jedna metalna jednokrilna vrata koja služe za unos opreme i pristup osoblja za rukovanje.

U energetskom smislu transformatorsku stanicu čine SN i NN postrojenje s energetskim transformatorom.

Ovim idejnim rješenjem predviđeno je pet transformatorskih stanica 0,4 /20 kV. Od srednjenaponske strane predmetnih trafostanica, položit će se srednjenaponski kabel do priključnog rasklopišta RS SE Orlec u kojem će se obaviti priključak na srednjenaponsku mrežu HEP ODS-a.

Predmetno rasklopište će biti susretno postrojenje za priključak na mrežu operatora HEP ODS-a i nije predmet ovog idejnog rješenja.
Odabir priključnog srednjeg napona obavit će se prethodnom elektroenergetskom suglasnosti koju će izdati nadležni HEP Operator Distribucijskog Sustava (HEP ODS). Elektrana se priključuje na distribucijsku mrežu na najpogodnijem mjestu sa stajališta uvjeta u mreži (naponske prilike, gubici, struja kratkog spoja) te tehničkim karakteristikama elektrane (priključna snaga, vrsta generatora, ...).

Obračunsko mjerno mjesto i prekidač za odvajanje nalaze se na sučelju elektrane i distribucijske mreže, tj. na mjestu razgraničenja vlasništva između HEP ODS-a i proizvođača. Mjesto razgraničenja vlasništva određuje HEP ODS prema interesu distribucijske mreže.

Pregledna situacija sunčane elektrane na ortofoto podlozi i na kopiji katastarskog plana prikazana je slikama 2.2-1. i 2.2-2. u nastavku.
Slika 2.2-1. Pregledna situacija na DOF-u
Izgradnja sunčane elektrane Orlec Trinkel - zapad

Slika 2.2-2. Situacija građevine na kopiji katastarskog plana
2.2.2. Tehnički opis elektrotehničkog dijela rješenja

2.2.2.1. Planiranje vršne snage sunčane elektrane

Elektrana je podijeljena na četiri segmenta – sjeverno, središnje istočno, središnje i zapadno polje. Predviđeno je korištenje FN modula spojenih u nizove po 24 modula. Konačna konfiguracija fotonaponske elektrane ovisi i o uparivanju fotonaponskih modula s izmjenjivačima te je takvom konfiguracijom definirana i priključna snaga elektrane.

Tablica 2.2.1. u nastavku prikazuje konfiguracije pojedinih FN polja po segmentima priključenih na pojedini izmjenjivač.

Tablica 2.2.-1. Konfiguracije segmenata FN polja i instalirane snage po segmentima

<table>
<thead>
<tr>
<th>Oznaka segmenta</th>
<th>Broj FN modula</th>
<th>Konfiguracija FN polja (broj izmjenjivača x broj nizova x broj modula u nizu)</th>
<th>Instalirana snaga segmenta [kWp]</th>
<th>Izlazna snaga izmjenjivača [kW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS1</td>
<td>3456</td>
<td>16x9x24</td>
<td>1002,24</td>
<td>960</td>
</tr>
<tr>
<td>TS2</td>
<td>2376</td>
<td>11x9x24</td>
<td>689,04</td>
<td>660</td>
</tr>
<tr>
<td>TS3</td>
<td>3672</td>
<td>17x9x24</td>
<td>1064,88</td>
<td>1020</td>
</tr>
<tr>
<td>TS4</td>
<td>1728</td>
<td>8x9x24</td>
<td>501,12</td>
<td>480</td>
</tr>
<tr>
<td>TS5</td>
<td>3672</td>
<td>17x9x24</td>
<td>1064,88</td>
<td>1020</td>
</tr>
<tr>
<td>UKUPNO:</td>
<td></td>
<td></td>
<td>4140</td>
<td></td>
</tr>
</tbody>
</table>

Sukladno navedenom definira se vršna snaga sunčane elektrane od 4,14 MW.

Postavljanje fotonaponskih panela predviđeno je tako da se izbjegavaju lokalna zasjenjenja od objekata i drugih panela neposredno na lokaciji te izbjegavanja postavljanja FN modula na mjestima gdje je zasjenjenje prisutno u duljem dijelu dana.

Slikama 2.2.-3. i 2.2.-4. u nastavku je prikazana blok shema sunčane elektrane i udaljenost između fotonaponskih panela.
Elaborat zaštite okoliša za ocjenu potrebi procjene utjecaja zahvata na okoliš

Izgradnja sunčane elektrane Orlec Trinket - zapad

Slika 2.2-3. Blok shema sunčane elektrane
Elaborat zaštite okoliša za ocjenu potrebi procjene utjecaja zahvata na okoliš

Izgradnja sunčane elektrane Orlec Trinket - zapad

Slika 2.2-4. Udaljenost između FN panela
Elaborat zaštite okoliša za ocjenu potrebe procjene utjecaja zahvata na okoliš

Izgradnja sunčane elektrane Orlec Trinkel - zapad

Slika 2.2

Karakteristični presjeci

Slika 2.2-5. Karakteristični presjeci
2.2.2.2. Izbor i dimenzioniranje osnovnih komponenata sunčane elektrane

2.2.2.2.1. Fotonaponski moduli

Fotonaponski moduli služe za izravnu pretvorbu sunčane energije u električnu energiju. Za idejno rješenje odabrani su visokoučinkoviti monokristalični moduli, tip Panda YL290C-30b proizvođača Yinli Solar sljedećih karakteristika prikazanih u tablici 2.2-2.

Tablica 2.2-2. Osnovne karakteristike FN modula Panda YL290C-30b

<table>
<thead>
<tr>
<th>Maksimalna snaga</th>
<th>290 Wp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Napon pri maksimalnoj snazi</td>
<td>32 V</td>
</tr>
<tr>
<td>Struja pri maksimalnoj snazi</td>
<td>9,06 V</td>
</tr>
<tr>
<td>Napon otvorenog kruga</td>
<td>39,6 V</td>
</tr>
<tr>
<td>Dimenzije</td>
<td>1640 x 990 x 35 mm</td>
</tr>
<tr>
<td>Masa</td>
<td>18,5 kg</td>
</tr>
</tbody>
</table>

Dimenzije i elektroenergetske karakteristike fotonaponskih modula ovise o proizvođaču i modelu i mogu se promijeniti, ali po dimenzijama i karakteristikama neće se bitnije razlikovati.

2.2.2.2.2. Podkonstrukcija za montažu fotonaponskih modula

U cilju ostvarivanja maksimalne moguće snage pretpostavljeno je instaliranje fotonaponskih modula na nosače postavljene na betonskim temeljima. Fotonaponske module potrebno je učvrstiti na tipičnu montažnu podkonstrukciju za takve namjene. Potkonstrukcijske komponente potrebno je učvrstiti izravno na nosivu konstrukciju, te na njih montirati šine na koje će se montirati fotonaponski moduli. Međusobno učvršćivanje fotonaponskih modula na šine je potrebno izvesti s posebnim stezaljkama za pričvršćivanje fotonaponskih modula.

2.2.2.2.3. Izmjenjivači

Prema konfiguraciji i broju modula koju definira površina zahvata i razmještaj modula, potrebno je izabrati izmjenjivače. U ovome slučaju, pretpostavljeno je korištenje izmjenjivača proizvođača SMA, uz uparivanje izlaznih karakteristika fotonaponskog polja s ulaznim karakteristikama izmjenjivača. Ipak, treba imati na umu da konačan izbor konkretnog rješenja ovisi o nizu faktora, poput cijene, dostupnosti i očekivane proizvodnji električne energije, a odluka o izboru ovisi o konačnoj isplativosti određenog rješenja, koje je pak definirano konkretnom cijenom. Iskustveno, cijene za slične konfiguracije različitih proizvođača i/ili dobavljača opreme mogu se razlikovati do 20 %. Stoga će biti neophodno izbor temeljiti na nizu kriterija, od kojih su najveća iskoristivost prostora i proizvodnja električne energije jedni od kriterija, te se može pretpostaviti da će konačan izbor i tehničko rješenje ipak biti u određenoj mjeri različito od ovdje predloženog.

Izmjenjivači pretvaraju istosmjernu struju u izmjeničnu te na izlazu daju izmjenični napon reguliranog iznosa i frekvencije sinkroniziran s naponom NN mreže. U konkretnom slučaju predviđena je ugradnja 69 izmjenjivača maksimalne izlazne snage 60 kW.
Tablica 2.2-3. Osnovne karakteristike SMA Sunny Tripower 60

<table>
<thead>
<tr>
<th>Karakteristika</th>
<th>Vrijednost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maksimalna ulazana DC snaga</td>
<td>61,24 kW</td>
</tr>
<tr>
<td>Maksimalna izlazna AC snaga</td>
<td>60 kW</td>
</tr>
<tr>
<td>Maksimalni DC napon</td>
<td>1000 V</td>
</tr>
<tr>
<td>PV napon, MPP-područje</td>
<td>627-800 V</td>
</tr>
<tr>
<td>Dimenzije</td>
<td>740 x 570 x 300 mm</td>
</tr>
<tr>
<td>Masa</td>
<td>75 kg</td>
</tr>
</tbody>
</table>

Navedeni izmjernivači predstavljaju najnoviju generaciju izmjernivača opremljenih za međusoban rad u master/slave načinu rada, te je moguće međusobno povezati do 42 izmjernivača u jedan segment elektrane. Između pojedinih segmenta FN polja i izmjernivača potrebno je ugraditi spojnu kutiju s istosmjernim priključkom i ograničavačem snage.

Osim navedenog, izmjernivači se mogu opremiti sustavom za praćenje rada mreže, uređajem za automatsku sinkronizaciju, zaštitnim uređajima kao npr. zaštita od prenapona, zaštita od injektiranja istosmrne struje u mrežu i dr.

Predviđena je vanjska montaža izmjernivača na nosivu potkonstrukciju fotonaponskog panela.

Karakteristike i dimenzije izmjernivača ovise o proizvođaču i modelu i mogu se promijeniti, ali po dimenzijama i karakteristikama neće se bitnije razlikovati.

2.2.2.3. Unutarnji energetski i signalni kabelski razvod i pripadna oprema

Unutarnji energetski i signalni kabelski razvod sastoji se od instalacija istosmjernog napona između solarnih panela te spoj prema izmjernivaču. Instalacije istosmjernog napona izvest će se solarnim kabelom tipa PV1-F odgovarajućeg presjeka te prespojnim kutijama u kojima će biti instalirana nadstruja i preponska zaštita predmetnih instalacija. Također, instalirat će se i diode za zaštitu od povratne struje i to u okviru spojnih kabela ili u okviru spojne kutije, ovisno o odabiru opreme u sklopu glavnog projekta.

Instalacije istosmjernog napona izvest će se između panela obujmicama koje će se instalirati na određenim mjestima za pričvršćenje kabela koji se spajaju između izvoda na solarnim modulima. P prespajanje kabela istosmjerne struje između modula obavit će se tako da se dobiju kombinacije sa stringovima. Točan broj stringova i broj modula po stringu odredit će se proračunima u glavnom projektu. Sve kombinacije stringova moraju se preko spojnih kutija spojiti na izmjernivač.

Izmjenjivači će se povezati niskonaponskim kabelima u spojnoj kutiji te od spojne kutije do pripadajuće transfomerske stanice u kojoj se obavlja transformacija napona s niskog napona (0,4 kV) na srednji napon 20 kV.

Odabir priključnog srednjeg napona obavit će se prethodnom elektroenergetsom suglasnosti koju će izdati nadležni HEP Operator Distribucijskog Sustava (HEP ODS). Elektrana se priključuje na distribucijsku mrežu na najpogodnijem mjestu sa stajališta uvjeta u mreži (naponske prilike, gubici, struja kratkog spoja) te tehničkim karakteristikama elektrane (priključna snaga, vrsta generatora, ...).

Obračunsko mjerno mjesto i prekidač za odvajanje nalaze se na sučelju elektrane i distribucijske mreže, tj. na mjestu razgraničenja vlasništva između HEP ODS-a i proizvođača. Mjesto razgraničenja vlasništva određuje HEP ODS prema interesu distribucijske mreže.

Prekidač za odvajanje omogućuje odvajanje postrojenja elektrane iz paralelnog pogona s distribucijskim mrežom zbog sigurnosnih razloga (kvarovi u mreži i elektrani, kvaliteta električn...
energije). Zbog toga je prekidač za odvajanje izvršni element na kojeg djeluju zaštite koje jamče paralelni pogon postrojenja elektrane s distribucijskom mrežom bez nepoželjnih pojava i događaja. Upravljanje ovim sklopnim aparatom u isključivoj je nadležnosti HEP ODS-a. Prekidač za odvajanje u vlasništvu je HEP ODS-a, a sve nakon njega u vlasništvu je elektrane.

Uvjet sinkronizacije postrojenja elektrane na mrežu HEP ODS-a:
- sinkronizacija mora biti automatska,
- razlika napona manja od +/- 10% nazivnog napona,
- razlika frekvencije manja od +/- 0,5 Hz,
- razlika faznog kuta manja od +/- 10°.

2.2.2.4. Obračunsko mjerno mjesto (OMM)
Mjesto predaje električne energije u mrežu, odnosno mjesto preuzimanja električne energije iz elektrane je u pravilu na mjestu ugradnje prekidača za odvajanje, a nalazi se prije obračunskog mjernog mjesta (gledano sa strane distribucijske mreže). Mjerenje i obračun energije proizvođača je na srednjenaponskoj razini. Obračun električne energije na obračunskom mjernom mjestu temelji se na: neizravnom mjerenju napona i struje i struje izmjenične i struje pravougaone.

Oprema mjernog mjesta treba biti u skladu s Tehničkim uvjetima za obračunsko mjerno mjesto.

Proizvođač na mjestu priključka mora zadovoljiti uvjete kvalitete napona prema HRN EN 50160 i elektromagnetsku kompatibilnost prema HRN EN 61000. Prije puštanja u pokusni rad i za vrijeme pokusnog rada se mora mjeriti kvaliteta električne energije prema HRN EN 50160 i provjeriti jesu li izmjerene vrijednosti unutar zadanih granica.

2.2.2.5. Skladištenje električne energije
Skladištenje električne energije iz perspektive vlasnika sunčane elektrane poput SE „Orlec Trinket – zapad“ koja će isporučivati svu proizvedenu električnu energiju po povlaštenoj cijeni u mrežu HEP Operatora distribucijskog sustava, nema nikakvo tehno-ekonomsko opravdanje, a niti je to zakonski u potpunosti regulirano.

Iz perspektive stanovnika otoka Cresa može postojati potreba za neovisnošću o dvije podmorske kabelske veze s kopnom, no to nije moguće rješavati kroz izgradnju sunčane elektrane „Orlec Trinket – zapad“, a pogotovo takvo nešto uvjetovati. U slučajevima kada iz pogona ispadne podmorski kabel 110 kV Krk – Cres, ostaje još u pogonu podmorski kabel 35 kV Krk – Cres, i tada se mogu pojavit problemi u opskrbi električnom energijom na najudaljenijem mjestu, a to je na otoku Lošinju, no o pojačanjima mreže i poboljšanjima vodi brigu i nadležan je HEP Operator distribucijskog sustava. U planovima Hrvatskog operatora prijenosnog sustava je zamijeniti postojeći podmorski kabel 110 kV Krk – Cres novim, što će povećati pouzdanost napajanja električnom energijom stanovnika otoka Cresa i Lošinja.

2.2.2.6. Sustav zaštite od direktnog i indirektnog dodira
Zaštita od indirektnog napona izvest će se TN-S sustavom i zaštitnim nadstrujnim uređajima.

Zaštita od kratkog spoja izvest će se izborom automatskih prekidača, visokoučinskih osigurača s rastalnim ulošcima ili prekidačima u glavnim krugovima, a čije će vrijednosti biti dane u jednopolnim shemama razdjelnica. Zaštita od preopterećenja strujnih krugova izvest će se izborom osigurača...
odgovarajuće nazivne struje. Zaštita od slučajnog dodira dijelova pod naponom izvest će se izborom odgovarajućih materijala te izvedbom razdjelnika u traženoj razini zaštite. U svrhu zaštite od prenapona ugradit će se odvodnici prenapona odgovarajućih nazivnih odvodnih struja i naponskih zaštitnih razina. Odvodnici se spajaju između sabirnica L1, L2, L3, N i zaštitne sabirnice PE, kao i u krugove istosmjerne struje. Zaštita od preopterećenja i razornog djelovanja struje kratkog spoja izvest će se osiguračima propisanih veličina ovisno od presjeka vodiča pojedinih struju
od struje. Odvodnici se između sabirnica L1, L2, L3, N i zaštitne sabirnice PE, kao i u krugove istosmjerne struje. Zaštita od preopterećenja i razornog djelovanja struje kratkog spoja izvest će se osiguračima propisanih veličina ovisno od presjeka vodiča pojedinih struju.

Presjeci vodova će biti odabrani prema maksimalnim snagama i kontrolirani s obzirom na dozvoljeni pad napona.

2.2.2.7. Sustav zaštite od udara munje
Budući da se fotonaponski sustav instalira na slobodnoj površini, kao zaštita od munje služit će zasebna instalacija sustava za zaštitu od munje. Fotonaponski sustav sukladno normi HRN EN 62305 neće biti u izravnom kontaktu s instalacijom za zaštitu od munje. Sukladno tome, isti elementi predmetne instalacije moraju biti otporni na mehaničke i kemijske utjecaje. Radi korozije treba upotrebljavati pocinčani materijal, a ugrozene dijelove instalacije treba povremeno obnavljati te instalaciju održavati ispravnom. Silazni vodovi moraju omogućiti najkraću vezu s uzemljivačem, po mogućnosti bez promjene smjera. Spojevi, a naročito oni izvedeni varenjem, moraju biti zaštićeni od korozije odgovarajućim premazom.

2.2.2.8. Uzemljivački vodiči i vodiči za zaštitno izjednačavanje potencijala
Instalacija izjednačenja potencijala osigurat će se dovođenjem na isti potencijal svih metalnih masa solarnih panela spajanjem na glavni uzemljivač cjelokupnog postrojenja uz kabelski spoj do priključka na elektroenergetsku mrežu. U odnosu na hvataljke sustava za zaštitu od munje, solarni fotonaponski sustav potrebno je odmaknuti koliko dopušta situacija.

Vodovodne mreže ne smiju služiti kao uzemljivač ako postoji mogućnost da s njih dođe do preskoka iskre u unutrašnjost građevine. One moraju biti spojene s uzemljenjem kao i ostale metalne mase. Nakon završetka radova izvođač mora ispitati instalaciju mjerenjem otpora rasprostranjanja uzemljenja, pregledom svih instalacijskih vodova i spojeva. Potrebno je izdati odgovarajuća mjerna izvješća.

2.2.2.9. Meteorološka stanica
Sunčana elektrana će se opremiti odgovarajućom mjernom meteorološkom stanicom. Predviđa se ugradnja sljedeće opreme u sklopu meteorološke stanice:
- anemometar za mjerenje brzine vjetra,
- smjerokaz za mjerenje smjera vjetra,
- mjerač temperature za mjerenje temperature zraka,
- higrometar za mjerenje vlage zraka,
- piranometar za mjerenje ukupnog sunčevog zračenja sa svim valnim duljinama,
- centralni bilježnik podataka (eng. data logger).
2.2.3. Tehnički opis građevinskog dijela rješenja

2.2.3.1. Građevinski materijali i radovi za montažu fotonaponskih panela

Nosiva konstrukcija

Fotonaponski paneli se oslanjaju na otvorenu čeličnu rešetkastu konstrukciju koja se sastoji od modularno izvedenih ravninskih okvira, čeličnih stupova, spregova te armiranobetonskih temelja. Na ravninski okvir postavljen pod kutem od 29° oslanjaju se fotonaponski paneli. Opterećenje se s ravninskog okvira stupovima prenosi u armiranobetonsku temeljnu gredu, betona C30/37. Predviđena je izvedba čelične konstrukcije od visokovrijednog čelika S355, s izvedbom antikorozivne zaštite vrućim cinčanjem.

Paneli moraju biti postavljeni tako da je njihov najniži dio na visini višoj od 50 cm. Konačan izgled nosive konstrukcije ovisi o konkretno odabranim modulima na temelju ponuda dobavljača.

Transport

Dimenzije građevine dopuštaju mogućnost sklapanja pojedinih dijelova u djelomično kompaktnu cjelinu u tvornici za izradu predgotovljenih elemenata te transport na predviđenu lokaciju. Prilikom izvođenja pripremnih radova potrebno je osigurati pristupni put za pristup teškog tereta i auto dizalice.

Montaža

Montaža segmenata sunčane elektrane vrši se po sljedećem postupku:

a) građevinski radovi:
 - pripremni radovi s kolčenjem;
 - zemljani radovi kao što su formiranje pristupnih puteva, kopanje temelja nosive konstrukcije solarnih panela, kopanje rova za polaganje podzemnih niskonaponskih kabela i zatrpanje nakon polaganja i dr;
 - betonski radovi kao što je betoniranje, betoniranje temelja čelične konstrukcije koja nosi solarnе panele i dr;
 - postavljanje nosive metalne konstrukcije za solarnе panele.

b) montaža elektroopreme:
 - montaža i spajanje solarnih panela
 - montaža i spajanje izmjenjivača
 - unošenje i postavljanje SN sklopnog postrojenja,
 - unošenje i postavljanje NN sklopnog postrojenja,
 - unošenje i postavljanje opreme za daljinsko vođenje
 - spajanje elemenata opreme s uzemljenjem,
 - polaganje vanjskog uzemljenja i spajanje na unutarnje zaštitno uzemljenje,
 - polaganje i spajanje NN i SN kabela,
 - mjerenja, ispitivanja i puštanje u pogon s izdavanjem odgovarajućih ispitnih protokola.

2.2.3.2. Transformatorske stanice

 Transformatorske stanice su u građevnom smislu slobodnostojeci, tipski kompaktni tvornički dogotavljeni objekti, tipa MTS 12(24) – 1000 kVA, tlocrtnih dimenzija 328 x 418 cm i tipa KTS 12(24) – 630 kVA, tlocrtnih dimenzija 214 x 418 cm, izrađeni kao armirano betonske građevine (vidi sliku 2.2-6.).
Stanice imaju jedna metalna dvokrilna vrata koja služi za unos energetskog transformatora i jedna metalna jednokrilna vrata koja služi za unos opreme i pristup osoblja za rukovanje.
U energetskom smislu transformatorsku stanicu čine SN i NN postrojenje s energetskim transformatorom.

Slika 2.2.-6. Pročelja – KTS 12(24)-1x630(1000) i pročelja MTS 12(24)-1x630(1000)
Temelji transformatora

Predviđen je zasebni temelj transformatora za svaki od transformatora nazivne snage 630 kVA, odnosno 1 MVA. Temelji transformatora su armiranobetonske konstrukcije koje se sastoje od greda i ploče za prijenos opterećenja na tlo te od kade za prihvat ulja iz transformatora. Na gredu temelja se ugrađuju šine na koje se oslanja transformator. Kada će biti spojena na uljnu odvodnju, a kod izrade glavnog projekta dimenzije uljne kade se moraju uskladiti s dimenzijama odabranog transformatora prema važećim propisima. Temelj mora biti vodonepropusna kako bi se spriječilo da eventualno procijelo ulje dospije u okoliš. Konačne dimenzije temeljne ploče odredit će se u glavnom projektu prema podacima iz geotehničkog elaborata koji se treba izraditi u dogovoru s projektantom temelja transformatora.

Proračun mehaničke otpornosti i stabilnosti

Proračun opterećenja te dimenzioniranje elemenata bit će provedeni u skladu s važećim propisom za betonske konstrukcije te normama na koje se taj propis poziva.

2.2.3.3. Plato

Sunčana elektrana Orlec-Trinket - zapad na otoku Cresu locirana je na prostoru blage udoline na srednjem dijelu otoka Cresa, na području lokalnog naziva Trinket, općina Orlec, na dijelu katastarskih čestica k.č.br. 3230/6, 3235, 3239, 3242, 3243/1, 3243/2, 3243/3, 3243/4, 3243/5, k.o. Orlec, Primorsko – goranska županija.

Prstupi platoima izvest će se preko novoprojektiranih internih prometnih površina. Prometne površine unutar sunčane elektrane izvode se kao tucanički zastor bez asfalta. Nasip platoa transformatorske stanice izvest će se od kamenoj materijala prema kotama definiranim glavnim projektom.

Proračun mehaničke otpornosti i stabilnosti

2.2.3.4. Zaštitna ograda, kolni ulazi

Ograda sunčane elektrane izvest će se od žičanog pocinčanog pletiva, sivo-bijele boje, ukupna duljine cca 2865 m.

Ograda se postavlja na udaljenost od min. 5 m u odnosu na prikazane građevine idejnog rješenjem (fotonaponski moduli i trafostanice) osim na mjestima gdje makadamski prilazi to ne dopuštaju. Zaštitna žičana ograda se postavlja na metalne pocinčane stupove pobijene u tlo. Visina ograde mora biti min. 2,0 m te postavljena od terena na udaljenost min. 5,0 cm radi omogućavanja nesmetanog prolaza malih životinja unutar ograde sunčane elektrane. Kolni ulazi izvode se krilni s obaveznim uzemljenjem svih metalnih dijelova.

2.2.3.5. Prometno rješenje

Glavni kolni pristup s javne prometne površine sunčanoy elektrani je sa sjevera, s lokalne ceste LCS8093 (Valun-D100 (Porožina – Cres – Mali Lošinj)). Svakom od pet segmenta – polja SE omogućen je zaseban ulaz s četiri novoprojektirane interne prometnice.

Interne prometne površine

Interne prometne površine izvode se kao makadamski kolnik sa zajedničkim spojem na postojeću prometnicu. Novoprojektirani makadamski kolnik mora zadovoljiti uvjete pristupa za vatrogasno vozilo u pogledu nosivosti i geometrijskih karakteristika definiranih pravilnikom o uvjetima za vatrogasni pristup.
Ukupna površina makadamskih internih prometnih površina iznosi cca 7250m². Širina interne prometnice iznosi 4,5 m makadamskog kolnika sa 0,5 m bankine sa svake strane. Širina je definirana geometrijskim karakteristikama vozila za dopremu opreme sunčane elektrane, te vatrogasnog vozila. Horizontalni radijusi zaobljenja na spojevima internih prometnica iznose od 7,0-12,0 m. Tlocrtni elementi internih prometnica su pravci i radijusi Rmin=25,0 m.

Projektirane prometnice izvode se V kategorije na brežuljkastom terenu za projektnu brzinu 40(30) km/h. Prometnice prate geometrijske karakteristike terena te se nalaze u padu potrebnom za odvodnju oborinskih voda.

Odvodnja oborinskih voda internih prometnica vrši se uzdužnim i poprečnim padom kolničke konstrukcije. Oborinske vode se ne mogu zamastiti, pa se procjeđuju kroz šljunak završne obrade u temeljno tlo.

Kolnička konstrukcija internih prometnica sastoji se od sljedećih slojeva:
- Mehanički zbijeni nosivi sloj drobljenog kamenog materijala
- Posteljica
- Nasip od kamenog materijala
- Temeljno tlo

S obzirom na karakteristike terena (kameni materijal) nema potrebe izvoditi drenažu prometnica.

2.2.3.6. Vodovod i odvodnja

Sunčana elektrana „Orlec Trinket – zapad” i pripadajuće trafostanice nemaju sanitarni čvor ni potrebu za pitkom vodom.

Za potrebe protupožarne zaštite predviđen je spremnik za vodu zapremine 12m³ smješten uz desni rub novoprojektirane interne prometnice na glavnom ulazu u sunčanu elektranu.

Odvodna oborinske vode s interne prometnice

Makadamske površine internih prometnica izvode se u poprečnom nagibu te se omogućuje otjecanje oborinske vode u okolni teren.

Odvodnja oborinske vode s krova zgrade trafostanice:

Oborinske vode s krova grada transformatora smatraju se čiste, te se ispuštaju neposredno s krovnih ploha u okolni teren.

Grafički prikaz građevinske situacije, vatrogasnog pristupa, normalnog poprečnog presjeka pristupnog puta, pročelja –KTS 12(24)-1x630(1000) i MTS 12(24)-1x630(1000) prikazana je na slikama 2.2-1. i 2.2-2.
2.3. Opis tehnoškog procesa

Tehnološki proces je pretvorba energije Sunca, odnosno sunčevog zračenja u električnu energiju, koja se potom predaje u elektroenergetski sustav. Sunčana elektrana će pretvarati energiju sunca u električnu energiju koristeći fotonaponsku tehnologiju, odnosno fotonaponske module i izmjenjivače.

2.4. Popis vrsta i količina tvari koje ulaze u tehnoškog proces i koje ostaju nakon tehnoškog procesa te emisija u okoliš

Ono što u fotonaponskoj tehnologiji opterećuje okoliš jest proizvodnja fotonaponskih ploča, te uporaba toksičnih materijala poput kadmija. Postupak dobivanja silicija, kao najčešćeg materijala od kojega se izrađuju fotonaponske ploče, energetski je vrlo zahtjevan. Sam rad sunčevih fotonaponskih ploča ekološki je prihvatljiv. Pri radu fotonaponskih ploča ne proizvode se štetni plinovi niti nastaju tehnoške otpadne vode. Za vrijeme rada elektrane nema otpadnih tvari. Obnovljivi izvori energije (voda, sunce, vjetar itd.) potječu iz prirode te se razlikom od fosilnih goriva, ne mogu vremenom iscrpiti. Iz perspektive zaštite okoliša, a naročito u pogledu smanjivanja emisija stakleničkih plinova i onečišćujućih tvari, energija iz obnovljivih izvora smatra se prihvatljivijom u odnosu na energiju dobivenu iz fosilnih goriva. Osim toga, obnovljivi izvori povećavaju i samoodrživost elektroenergetskog sustava, koji je danas još uvijek ovisan o isporuci ugljena, nafte i plina. Prestankom rada elektrane i zamjenom njene opreme nastaje otpad koji ovisno o vrsti treba zbrijeti u skladno zakonskim propisima. Fotonaponski moduli sadrže materijale koji se mogu reciklirati i ponovo koristiti u novim proizvodima, kao što su staklo, aluminij i poluvodički materijali.

2.5. Popis drugih aktivnosti potrebnih za realizaciju zahvata

Glavni kolni pristup s javne prometne površine sunčanoj elektrani je sa sjevera, s lokalne ceste LC58093 (Valun-D100 (Porozina – Cres – Mali Lošinj)). Svakom od pet segmenata – polja SE omogućen je zaseban ulaz s četiri novoprojektirane interne prometnice. Odabir priključnog srednjeg napona obaviti će se prethodnom elektroenergetskom suglasnosti koju će izdati nadležni HEP Operator Distribucijskog Sustava (HEP ODS). obračunsko mjerno mjesto i prekidač za odvajanje nalaze se na sučelju elektrane i distribucijske mreže, tj. na mjestu razgraničenja vlasništva između HEP ODS-a i proizvođača. Mjesto razgraničenja vlasništva određuje HEP ODS prema interesu distribucijske mreže.

2.6. Varijantna rješenja zahvata

Za zahvat nisu razmatrana varijantna rješenja.
3. PODACI O LOKACIJI I OPIS LOKACIJE ZAHVATA

3.1. Položaj zahvata u prostoru

Sunčana elektrana Orlec Trinket – zapad planira se izgraditi u središnjem dijelu otoka Cresa, na lokaciji oko 2 km sjeverozapadno od naselja Orlec, zapadno od državne ceste D100 Porozina – Cres – Mali Lošinj te neposredno južno od lokalne ceste LC58093 Valun – D100 (slika 3.1-1.) Područje predmetnog zahvata administrativno pripada naselju Zbišina pod Gradom Cresom u Primorsko – goranskoj županiji (slika 3.3-1.).

Slika 3.1-1. Položaj zahvata u prostoru na TK25
3.2. Odnos zahvata prema postojećim i planiranim zahvatima

Sama lokacija predmetne elektrane nalazi se izvan naseljenog područja. Najbliže naselje Orlec od lokacije elektrane udaljeno je cca 2 km. U neposrednoj blizini predmetne elektrane planirana je izgradnja sunčane elektrane „Orlec Trinkel – istok“.

Lokacija predmetnog zahvata nalazi se na području koje prostorno–planski reguliraju sljedeći dokumenti:

- **Prostorni plan Primorsko-goranske županije** ("Službene novine Primorsko-goranske županije" broj 32/13 i 7/17-ispr.) (u nastavku PPGŽ).

- **Prostorni plan uređenja Grada Cresa** ("Službene novine Primorsko-goranske županije", broj 31/02. i 23/06.-uskl. i 03/11.).

Za predmetni zahvat „Sunčana elektrana Orlec Trinkel – ZAPAD“ određuju se uvjeti gradnje neposrednom provedbom PPGŽ.

U nastavku se navode dijelovi iz nadležnog dokumenta prostornog uređenja, koji su relevantni za provedbu predmetnog zahvata, uključujući i njegovu lokaciju.

Prostorni plan Primorsko-goranske županije

Lokacija predmetne sunčane elektrane u PPGŽ prikazana je na kartografskom prikazu 1.1. Korištenje i namjena prostora, planskom oznakom 6 – **Sunčana elektrana Orlec Trinkel – ZAPAD** kao građevina i zahvat od županijskog interesa (vidi sliku 3.2-1.). Sunčana elektrana Orlec Trinkel – ISTOK prikazana je planskom oznakom 7.

Na kartografskom prikazu 3. Uvjeti korištenja, uređenja i zaštite prostora, 3a. Zaštita prirodne baštine vidljivo je da se lokacija predmetne sunčane elektrane nalazi izvan zaštićenih dijelova prirode baštine temeljem Zakona o zaštiti prirode i područja predložena za zaštitu koja se štite odredbama prostornog plana (vidi sliku 3.2-2.).

Na kartografskom prikazu 3. Uvjeti korištenja, uređenja i zaštite prostora, 3b. Zaštita kulturno povijesnog nasljeđa vidljivo je da se lokacija predmetne sunčane elektrane nalazi izvan povijesnih graditeljskih cjelina, memorijalne i etnološke baštine. Udaljena je od povijesnih građevina i arheoloških područja i lokaliteta (vidi sliku 3.2-3.).
Slika 3.2-1. Izvod iz Prostornog plana Primorsko-goranske županije: 1. Korištenje i namjena površina ("Službene novine Primorsko-goranske županije" broj 32/13 i 7/17-ispr.)

U odredbama za provođenje, a vezano za predmetni zahvat navodi se:

2. Uvjeti određivanja prostora građevina od važnosti za državu i županiju

2.2. Građevine od važnosti za Županiju

Članak 20.

Ovim Planom određuju se građevine i zahvati od važnosti za Županiju:

2.2.6. Građevine infrastruktura

2.2.6.3. Građevine energetske infrastrukture s pripadajućim objektima, uređajima i instalacijama

1. Elektroenergetske građevine
 a) elektroenergetski objekti za proizvodnju električne energije:
 - „……,”
 - Sunčane elektrane za snage veće od 500 kW,
 - „…..”

5. Uvjeti određivanja građevinskih područja i korištenja izgrađena i neizgrađena dijela područja

5.1. Uvjeti određivanja građevinskih područja

5.1.2. Uvjeti određivanja građevinskih područja izdvojene namjene izvan naselja

5.1.2.1. Uvjeti određivanja građevinskih područja gospodarske namjene

Članak 63.

Energetske građevine (hidroelektrane, sunčane elektrane, vjetroelektrane, trafostanice, i sl.), prometne građevine (luke, terminali i sl.), vodne građevine (akumulacije, retencije i sl.) te ostale građevine plošne i linijske infrastrukture, ne smatraju se gospodarskom namjenom i za njih se, u pravilu, ne formira građevinsko područje.

6. Uvjeti određivanja prometnih i drugih infrastrukturnih sustava u prostoru

6.3. Infrastruktura energetskog sustava

6.3.5. Obnovljivi izvori energije i energetska učinkovitost

Članak 228.

Korištenje obnovljivih izvora energije i energetska učinkovitost su dva vrlo važna razvojna cilja u energetskom sektoru. Planom se predviđa racionalno korištenje energije korištenjem obnovljivih izvora energije, ovisno o energetskim i gospodarskim potencijalima pojedinih područja. Pod obnovljivim izvorima energije se podrazumijeva energija vode (male hidroelektrane do 10 MW), sunca, vjetra, geotermalna energija, energija iz biomase (unutar potencijala njene prirodne samoobnove / prirasta), te prema lokalnim prilikama toplina iz industrije i otpada. More i drugi vodeni tokovi obiluju energetskim potencijalom koji se korištenjem dizalica topline može upotrijebiti za potrebe grijanja i hlađenja priobalnih objekata, proizvodnju električne energije, ali i za procesnu opremu.
Planom je predviđeno iskorištavanje topline mora za potrebe velikih termoenergetskih objekata kao što je terminal ukapljenog prirodnog plina, u onom dijelu gdje se viškovi rashladne energije ne mogu u potpunosti iskoristiti od okolnih potrošača.

Cjeli prostor Županije smatra se prostorom za istraživanje mogućnosti primjene obnovljivih izvora energije i mjera energetске učinkovitosti, uz ograničenja definirana ovim Planom i posebnim propisima.

6.3.5.2. Sunčeva energija

Članak 232.

Sunčane elektrane snage veće od 500 kW su građevine od važnosti za Županiju.

Planom se podupire korištenje solarnih energija i manjih snaga za proizvodnju toplinske i električne energije na krovovima postojećih i novih stambenih, poslovnih i javnih objekata, te na nadstrešnicama, parkiralištima i drugim površinama pogodnim za njihov smještaj, kada god to ne sprečavaju drugi propisi.

Članak 233.

Za gradnju sunčanih elektrana primarno se imaju koristiti moduli bazirani na tehnologijama sunčanih fotonaponskih sustava. Na području Županije zbog izrazite reljefne raščlanjenosti nije prikladno graditi sunčane elektrane pojedinačne snage veće od 10 MW.

7. Mjere očuvanja krajobraznih vrijednosti

7.3. Otočje

7.3.1. Otoci Cres-Lošinj

Članak 251.

Na otocima Cres i Lošinj u iznimno razvedenim reljefom i raznolikim vegetacijskim pokrovom, stvorene su iznimno rijetke prirodne prilike za obitavanje te stvaranja ornitološkog rezervata na obalnim liticama. Raznovrsna krajobrazno-prostorna raščlanjenost pogodovala je razvoju jedne od najvećih kolonija bjeloglavih supova. Nalazi se na visokoj istočnoj obali Cresa, na liticama Fojiška – Pod Pregačica i Mali Bok – Koromačna. Gnjeđište druge rijetke i specifične ornitofaune nalazi se i na obalnim liticama Vele i Male stine na otoku Unije.

Značajan je i prepoznatljiv homogeni kulturni krajobraz širega prostora grada Cresa s mnoštvom malih raščlanjenih pačetvori maslinika i snažnom mrežom suhozidova, što čini nerazdvojni dio njegovog identiteta. Tu su i manje urbane cjeline i zaseoci koji su najčešće locirani u obalnom pojasu i kojima je uređeni poljoprivredni krajobraz dio njihove tradicijske slike poput Osora, Martinšćice, Pernata i sl.

Kvalitetu ambijenta cjelovitog mjesta treba doseći s planskim uređenjem i oblikovanjem zajedničkog – javnog prostora s visokim standardima.

7.4. Mjere zaštite krajobraza za pojedine planirane zahvate

Članak 254.

Za gospodarske zone, sportske centre, autocestu i brze ceste, željezničke pruge, lake, vjetroelektrane i sunčane elektrane izraditi projekte krajobraznog uređenja.
8. Mjere zaštite prirodnih vrijednosti i posebnosti i kulturno-povijesnih cijelina

8.1. Zaštita prirodnih baština

8.1.2. Nacionalna ekološka mreža

Članak 259.

Svi planovi, programi ili zahvati koji se planiraju realizirati na području ekološke mreže moraju biti u skladu s preporukama iz Uredbe o proglašenju ekološke mreže. Nijhova realizacija mora proći detaljnije procjene utjecaja na ekološku mrežu isključivo u slučajevima kada plan, program ili zahvat, samostalno ili u kombinaciji s ostalim planovima, programima i zahvatom ima značajan (negativan) utjecaj na očuvanje specifičnih prirodnih vrijednosti navedenih u Uredbi ili na cjelovitost same ekološke mreže.

11. Mjere provedbe

11.2. Područja primjene posebnih razvojnih i drugih mjera

11.2.8. Smjernice zaštite područja prirodnog baština

Članak 383.

Provedbene mjere za zaštićena područja i područja prirodnog baština predložena za zaštitu proizlaze iz kategorija u kojoj su proglašeni (strogi rezervati, nacionalni parkovi, posebni rezervati, parkovi prirode, regionalni parkovi, spomenici prirode, značajni krajobrazi, park-šume i spomenici parkovne arhitekture), potrebe očuvanja staništa ugroženih i rijetkih stanišnih tipova i/ili divljih svojstvi, te mogućim uzrocima njihove ugroženosti. Za područja uključena u Nacionalnu ekološku mrežu osnovne mjere zaštite proizlaze iz Smjernica za mjere zaštite u području Nacionalne ekološke mreže.

Članak 389.

Sa svrhom očuvanja prirodnih vrijednosti pri planiranju i izgradnji sunčanih elektrana potrebno je:
- Pri odabiru lokacija za sunčane elektrane treba izbjegavati područja rasprostranjenosti ugroženih i rijetkih stanišnih tipova, zaštićenih i/ili ugroženih vrsta flore i faune (naročito ornitofaune), karakteristike vodnih resursa i elemenata krajobraza pojedinih područja, a posebice ciljeve očuvanja područja ekološke mreže.
- Izgradnju sunčanih elektrana trebalo bi potencirati u zonama gdje već postoji određena komunalna infrastruktura i infrastruktura transporta energije odnosno gdje nema zahtjeva ili su minimalni zahtjevi za gradnjom novih objekata.
- Provesti odgovarajuća prethodna znanstvena istraživanja na svim potencijalnim lokacijama za sunčane elektrane, kako bi se isključili mogući negativni utjecaji na zastupljena rijetka staništa, rijetke tipove travnje, područja neophodna za hranjenje rijetkih ptica i drugo.
- Prilikom planiranja granica lokacije sunčane elektrane Belinovića na otoku Rabu voditi računa da se izbjegnu površine primanjki staništa - ciljeva očuvanja područja NEM HR2001023.
- Prilagođiti međugrađu istraživanja utjecaja izgradnje SE Barbićin na otoku Krsu na ornitofaunu tj.utjecaja na područja hranjenja bjeloglavog supa (posebni rezervat Glavine – Mala luka).

11.2.13. Građevine i zahvati razvojnih mjera

Članak 412.

Plan se u pravilu provodi prostornim planovima uređenja općine ili grada, a iznimno neposredno za građevine i zahvate od županijskog i državnog interesa za koje se daju uvjeti za neposrednu provedbu temeljem ovog Plana, te za ostale građevine od značaja za Državu, koje su posebnim propisom određene građevinama od državnog interesa.
Popis građevina od županijskog interesa određen je u tablici 32.

<table>
<thead>
<tr>
<th>OPĆINA/GRAD</th>
<th>GRAĐEVINA/ZAHVAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Bakar</td>
<td>Vjetroelektrana Tuhobić</td>
</tr>
<tr>
<td>2. Bakar</td>
<td>Vjetroelektrana Peškovo</td>
</tr>
<tr>
<td>3. Bakar/Kostrena</td>
<td>Lokacija Terminala ukapljenog naftnog plina u LOJP Bakar</td>
</tr>
<tr>
<td>4. Bakar/Čavle</td>
<td>Vjetroelektrana Pliš</td>
</tr>
<tr>
<td>5. Baška</td>
<td>Sunčana elektrana Barbičin</td>
</tr>
<tr>
<td>7. Cres</td>
<td>Sunčana elektrana Orlec – Trinket – ISTOK</td>
</tr>
<tr>
<td>8. Čabar</td>
<td>Akumulacija vode</td>
</tr>
<tr>
<td>9. Dobrinj</td>
<td>Lječilišno turistički kompleks Blato – Meline</td>
</tr>
<tr>
<td>10. Kostrena/Bakar</td>
<td>Rekonstrukcija industrijskog kompleksa za proizvodnju i preradu nafta u proizvodnoj zoni Urinj</td>
</tr>
<tr>
<td>11. Lovran</td>
<td>Žičara Učka</td>
</tr>
<tr>
<td>12. Mali Lošinj</td>
<td>Sunčana elektrana Ustrine</td>
</tr>
<tr>
<td>13. Mali Lošinj</td>
<td>Lječilište Veli Lošinj</td>
</tr>
<tr>
<td>14. Matulji</td>
<td>Centar za obuku vatrogasaca Šapjane</td>
</tr>
<tr>
<td>15. Mrkopalj</td>
<td>Poljoprivredno-stočarski centar Begovo Razdolje</td>
</tr>
<tr>
<td>16. Novi Vinodolski</td>
<td>Pensionica vode na području uvale Žrnovnica</td>
</tr>
<tr>
<td>17. Novi Vinodolski</td>
<td>Vjetroelektrana Ruševo – Krmpotsko</td>
</tr>
<tr>
<td>18. Novi Vinodolski</td>
<td>Sunčana elektrana Gusta Draga</td>
</tr>
<tr>
<td>19. Omišalj</td>
<td>Marina Peškera</td>
</tr>
<tr>
<td>20. Rab</td>
<td>Psihijatrijska bolnica Rab</td>
</tr>
<tr>
<td>21. Rab</td>
<td>Memorijalni centar Kampor</td>
</tr>
<tr>
<td>22. Rab</td>
<td>Sunčana elektrana Belinovica</td>
</tr>
<tr>
<td>23. Rab</td>
<td>Talasoterapija Rab</td>
</tr>
<tr>
<td>24. Ravna Gora/ Mrkopalj/Delnice</td>
<td>Vjetroelektrana Poljička Kosa</td>
</tr>
<tr>
<td>25. Skrad</td>
<td>Lječilišno turistički kompleks Šiler</td>
</tr>
</tbody>
</table>

Za svaku pojedinu građevinu određuju se uvjeti gradnje neposrednom provedbom ovog Plana.

6. SUNČANA ELEKTRANA ORLEC – TRINKET – ZAPAD

1. **Oblik i veličina građevinske čestice**
 - Lokacija zahvata označena je na grafičkom prilogu.
 - Površina obuhvata namijenjenog za smještaj solarnih panela, platoa trafostanice i pomoćnih građevina iznosi najviše 31 ha.

2. **Namjena građevine**
 - Osnovna namjena građevine je proizvodnja električne energije – sunčana fotonaponska elektrana. Pod sunčanom elektranom podrazumijeva se cjelina sastavljena od fotonaponskih panela, trafostanice, pripadne elektroenergetske mreže, pomoćnih građevina u funkciji elektrane (spremišta, radionice i sl.).
3. Uvjeti gradnje pojedinih sadržaja

- Fotonaponski paneli moraju biti postavljeni tako da je njihov najniži dio na visini višoj od 50 cm, tako da tlo ispod njih ne bude zasjenjeno u potpunosti i kroz cijeli dan.
- Pomoćne građevine izvode se kao prizemne, visine do 7 metara (mjeren od kote konačno zaravnatog terena do gornjeg ruba krovnog vijenca).
- Najveća dopuštena bruto površina pomoćne građevine je 300 m².
- Građevine (spremišta/radionice) se moraju svojim oblikovnim karakteristikama i uporabom građevinskih materijala prilagoditi lokalnoj graditeljskoj tradiciji (kamen).
- Maksimalni koeficijent izgrađenosti građevne čestice je kig = 0,7. Koeficijent izgrađenosti podrazumijeva odnos izgrađene površine zemljišta pod svim građevinama, uključujući tlocrtne projekcije fotonaponskih panela i ukupne površine građevinske čestice.
- Najveći dopušteni koeficijent iskorištenosti je 1.

4. Kapacitet

- Maksimalna dopuštena snaga sunčane elektrane je 10 MW.

5. Veličina građevina

- Osigurati zaštitni pojas od pristupne javne prometne površine širok najmanje 10 m.
- Najmanja dopuštena udaljenost trafostanice od granice građevne čestice mora biti 1 m, a udaljenost od granice prema građevinskoj čestici javne prometne površine mora biti najmanje 2 m.
- Sunčana elektrana mora biti ograđena neupadljivom, prozračnom ogradom sive - bijele boje (boje kamena) s omogućenim prolazima za male životinje.
- Pristupna cesta do građevine mora biti minimalno 4,5 m široka uz osiguranje sigurnog mimoilaženja vozila (ugibališta na vidljivom dijelu prometnice).
- Oborinska voda sa solarnih panela može se prikupljati u spremište za pohranjivanje kišnice koje se može nalaziti izvan građevinskog zemljišta sunčane elektrane ako će se koristiti za javne potrebe (vatrogasna voda, napajanje stoke, navodnjavanje i sl.)

8. Zaštita prirodne baštine

- Provesti odgovarajuća prethodna znanstvena istraživanja na lokaciji sunčane elektrane, kako bi se isključili mogući negativni utjecaji na zastupljena rijetka staništa, rijetke tipove travnjaka, područja neophodna za hranjenje rijetkih ptica i drugo.
- Uzimajući u obzir razvoj tehnologije za korištenje energije sunca kao obnovljivog izvora energije, pri izgradnji sunčane elektrane maksimalno koristiti materijale (netoškiće za okoliš) i tehnologije
(npr. tehnologija tankog filma) koje smanjuju rizike za očuvanje povoljnih uvjeta staništa i stabilnosti populacija vrste flore i faune, uz istodobno povećanje učinkovitosti.

Grafički prilog: Lokacija SE Orlec – Trinket – ZAPAD,
Izvor: PPPGŽ ("Službene novine Primorsko-goranske županije" broj 32/13 i 7/17-ispr.)

3.3. **Opis stanja sastavnica okoliša na koje bi zahvat mogao imati značajan utjecaj**

3.3.1. **Stanovništvo i naseljenost**

Stanovništvo Otoka Cresa u prošlosti se pretežito bavilo ovčarstvom, stočarstvom, maslinarstvom, vinogradarstvom i ribarstvom. Danas je dominantnu ulogu u gospodarstvu Otoka preuzeo turizam. Iz popisa stanovništva 2011. godine možemo vidjeti da aktivno radi polovica stanovništva na području Grada od čega je najveći broj zaposlenih baš u terciarnom sektoru.
Slika 3.3-1. Administrativni položaj SE Orlec Trinket - zapad
Izgradnja sunčane elektrane Orlec Trinket - zapad

3.3.2. Kvaliteta zraka

S obzirom na onečišćenost zraka, teritorij Republike Hrvatske klasificira se na zone i aglomeracije (Uredba o određivanju zona i aglomeracija prema razinama onečišćenosti zraka na teritoriju Republike Hrvatske (NN 01 / 2014.)). Zone predstavljaju veća područja poput primjerice županije, dok su aglomeracije vezane uz veće gradove (Zagreb, Split, Rijeka, itd.).

Lokacija predmetnog zahvata nalazi se na području zone Lika, Gorski kotar i Primorje - HR 3 koja obuhvaća područje Karlovačke, Ličko – senjske i Primorsko – goranske županije izuzimajući aglomeraciju Rijeka, HR RI.

Prema podacima Godišnjeg izvješća o praćenju kvalitete zraka na području Republike Hrvatske za 2016. godinu, zona HR 3 ima 5 mjernih postaja (Parg, Jezero Vrana, Delnice, Plitvička jezera i Karlovac 1).
S obzirom na to da je lokacija zahvata najbliža mjernoj postaji Jezero Vrana za analizu kvalitete zraka korišteni su podaci s iste. U 2016. godini na mjernoj postaji Jezero Vrana zrak je bio I. kategorije s obzirom na SO₂.

Na području Grada Cresa nema značajnih izvora onečišćenja zraka. Kvaliteta zraka je I. kategorije (čisti ili neznatno onečišćen zrak). Područje otoka Cresa je pod utjecajem daljinskog odnosno prekograničnog onečišćenja, ali su koncentracije niske i ne predstavljaju opasnost za okoliš ili zdravlje stanovnika.

3.3.3. Klimatološka obilježja

Lokacija predmetnog zahvata prema Koppenovoj klimatskoj regionalizaciji pripada području umjereno tople vlazne klime s vrućim ljetom, Cfa. Spomenutu klimu ima veći dio Istre i Kvarnerskog primorja s otocima Krkom, Rabom, Cresom, Lošinjom i Pagom te zaleđe srednje Dalmacije. Klima otoka Cresa uvjetovana je geografskim smještajem, raspodjelom kopna i mora, reljefom i veličinom otoka. Ljeta su uglavnom vruća i suha sa srednjom temperaturom srpnja od ≥ 22° C. Dok su zime temperaturno blage, vjetrovite i kišne s mogućim ali vrlo rijetkim snijegom. Sjeverni dio Otoka je smješten duboko u Kvarnerskom zaljevu, hipsometrijski je viši od južnog dijela te bliži planinskom zaleđu na kopnu što se odražava na moguću pojavu snijega. Na južnom dijelu Otoka izraženiji je maritimni utjecaj te manja energija reljefa.

Podaci za analizu klimatskih karakteristika šireg područja zahvata obrađeni su za postaju Mali Lošinj koji se prema gore navedenoj klimatskoj regionalizaciji nalazi u istom prostoru a ujedno je i najbliža glavna meteorološka postaja.

U višegodišnjem promatranom periodu analizirana je srednja mjesečna temperatura zraka za razdoblje od 1961. do 2016. godine (*slika 3.3-4.*). Najtopliji mjesec je srpanj sa srednjom mjesečnom temperaturom od 24,5° C a najhladniji siječanj sa 7,8° C.

Trajanje osunčavanja ili insolacije, odnosno trajanje sijanja sunca je razdoblje u kojem je izravno Sunčevo zračenje veće od 120 W/m². Mjeri se u satima. Prema podacima od DHMZ-a na širem području zahvata ljetni mjeseci su najsunčaniji (*slika 3.3-5.*). Temeljni podatak za projektiranje sustava za pretvorbu Sunčeve energije je ozračenost vodoravne plohe ukupnim Sunčevim zračenjem. Iz insolacije možemo izračunati ukupno Sunčevo zračenje na vodoravnu plohu ako se raspolaze s višegodišnjim nizom podataka. Tako su nastale karte ozračenosti vodoravne plohe ukupnim Sunčevim zračenjem za područje Republike Hrvatske. Na *slici 3.3.-7.* prikazane su vrijednosti srednje godišnje ozračenosti vodoravne plohe za cijelo područje RH izražene u megavatsatima po metru kvadratnom (MWh/m²). Za otoke Primorsko – goranske županije (*slika 3.3-8.*) vrijednosti se kreću od 1,35 MWh/m² za sjeverne dijelove Krka i Cresa i do 1,50 MWh/m² za južne dijelove Cresa i Lošinja. Predmetna lokacija nalazi se u području visoke vrijednosti srednje godišnje ozračenosti o čemu ovisi proizvodnost fotonaponskog sustava na određenoj lokaciji.

Prosječna mjesečna količina oborina za promatrano razdoblje bilježi maksimum oborina tijekom jeseni i zime dok je minimum oborina ljeti. Podaci o broju vedrih dana i dana s maglom pokazuju vrlo mali broj dana s maglom te najviše vedrih dana tijekom srpnja i kolovoza (*slika 3.3-6.*). Snježni pokrivač moguća je pojava tijekom zimskim mjeseci na sjevernom dijelu otoka Cresa.
Slika 3.3-4. Srednja temperature zraka za postaju Mali Lošinj, 1961.-2016., izvor: www.meteo.hr

Slika 3.3-5. Trajanje osunčavanja za postaju Mali Lošinj, 1961.-2016., izvor: www.meteo.hr
Slika 3.3-6. Količina oborina, broj vedrih i broj dana s maglom za postaju Mali Lošinj, 1961.-2016., izvor: www.meteo.hr

Klimatske promjene i projekcije

Dijagnostiranje klimatskih varijacija i promjena temperature zraka i oborine na području Hrvatske od početka 20. st. provedeno je prema podacima dugogodišnjih meteoroloških mjerenja, koja su započeta tijekom 19. st. na meteorološkim postajama u različitim klimatskim područjima: Osijek (kontinentalna klima), Zagreb – Grič (kontinentalna klima pod blagim maritimnim utjecajem), Gospić (kontinentalna klima gorske Hrvatske pod jakim maritimnim utjecajem), Crikvenica (maritimna klima istočne obale sjevernog Jadrana) i Hvar (maritimna klima dalmatinskog otočja).

Analizirani su dekadni trendovi tijekom 20. st. te trendovi za razdoblje do 2008. g. kako bi se uočile razlike koje se dešavaju zbog promjena u temperaturi i oborinama početkom 21. stoljeća. Uočeno je zatopljenje u srednjim temperaturama zraka, što je posljedica promjena u temperaturnim ekstremima. Učestalost toplih ili hladnih dana razlikuje se između kontinentalne i maritimne klime jadranskih otoka. U analiziranom razdoblju većina toplih temperaturnih indeksa ima pozitivan a hladnih negativan trend. Trendovi su izraženiji na Jadranu nego u unutrašnjosti.

Analizirani podaci ukazuju da u Hrvatskoj ne postoje velike promjene u ekstremima koji se odnose na velike količine oborine i učestalost vlažnih i vrlo vlažnih dana, već da se očituje u smanjenju godišnjih količina oborina što se odrazi na promjene u učestalosti kišnih dana manjeg intenziteta i značajno povećanu učestalost suhih dana.

smanjenje prosječnog broja dana sa snijegom, na povećanje broja vrućih dana te na manje povećanje broja dana sa značajnom oborinom zimi.

3.3.4. Hidrološka i hidrogeološka obilježja

Hidrogeološki, otok Cres je razmjerno visoko bezvodno krško područje. Razlog tome su neravnomjerno raspoređene padaline, česte ljetne suše i poroznost krške podloge. Izuzetak je Vransko jezero koje predstavlja najveću kritodepresiju u Hrvatskoj s najdubljom točkom od 61,5 m ispod morske razine. Ono predstavlja najveći izvor slatke vode u ovom području te skrbi vodom dva najveća otoka. Nepropusni dolomiti na dnu jezera omogućuju zadržavanje vode do razine vapnenca gdje višak vode oteže u krško podzemlje. Sama udubina Jezera nastala je spiranjem dolomitnih padina i odnošenjem trošnog materijala kroz krško podzemlje duž jedne od rasjednih ploha.

Na Otoku se javljaju i povremene bujice za vrijeme jakih kiša koje formiraju jaruge na obalnim padinama te postoje ponikve koje su ispunjene nepropusnim tlom pa tako stvaraju lokve. Također postoji petnaestak izvora od kojih je najznačajniji onaj u Piskelu u južnom dijelu creskog zaljeva.

3.3.4.1. Pregled stanja vodnih tijela

Za potrebe Planova upravljanja vodnim područjima, provodi se načelno delineacija i proglašavanje zasebnih vodnih tijela površinskih voda na:
- tekućicama s površinom sliva većom od 10 km2,
- stajaćicama površine veće od 0.5 km2,
- prijelaznim i priobalnim vodama bez obzira na veličinu.

Za vrlo mala vodna tijela na lokaciji zahvata koje se zbog veličine, a prema Zakonu o vodama odnosno Okvirnoj direktivi o vodama, ne proglašavaju zasebnim vodnim tijelom primjenjuju se uvjeti zaštite kako slijedi:
- Sve manje vode koje su povezane s vodnim tijelom koje je proglašeno Planom upravljanja vodnim područjima, smatraju se njegovim dijelom i za njih važe isti uvjeti kao za to veće vodno tijelo.
- Za manja vodna tijela koja nisu proglašena Planom upravljanja vodnim područjima i nisu sastavni dio većeg vodnog tijela, važe uvjeti kao za vodno tijelo iste kategorije (tekućica, stajaćica, prijelazna voda ili priobalna voda) najosjetljivijeg ekotipa iz pripadajuće ekoregije.

Lokacija predmetnog zahvata sunčana elektrana „Orlec Trinket – zapad” nalazi se u Primorsko – goranskoj županiji, na prostoru Grada Cresa. Za potrebe izrade Elaborata zaštite okoliša za navedeni zahvat Hrvatskim vodama dostavljen je zahtjev za pristup informacijama o stanju vodnih tijela, odnosno površinskih i podzemnih voda na području zahvata. Prema Zahtjevu (Klasa: 008 – 02 / 18 – 02 / 58, Uruđbeni broj: 15 – 18 – 1) u nastavku slijede prikazi i stanja površinskog, podzemnog i priobalnog vodnog tijela.

Na širem području predmetnog zahvata nalazi se:
- Podzemno vodno tijelo JOGN_13 – Jadranški otoci Cres
Tablica 3.3-1. Stanje tijela podzemne vode JOGN_13 – Jadranski otoci Cres (*slika 3.3-10.*)

<table>
<thead>
<tr>
<th>Stanje</th>
<th>Procjena stanja</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kemijsko stanje</td>
<td>dobro</td>
</tr>
<tr>
<td>Količinsko stanje</td>
<td>dobro</td>
</tr>
<tr>
<td>Ukupno stanje</td>
<td>dobro</td>
</tr>
</tbody>
</table>

Količinsko i kemijsko stanje tijela podzemne vode je dobro (*vidi tablicu 3.3-1.*).

- Površinsko vodno tijelo JOLN001 Vransko jezero (*slika 3.3-9.*)

Tablica 3.3-2. Opći podaci vodnog tijela JOLN001 Vransko jezero, izvor: Hrvatske vode

<table>
<thead>
<tr>
<th>Sifra vodnog tijela:</th>
<th>JOLN001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naziv vodnog tijela:</td>
<td>Vransko jezero</td>
</tr>
<tr>
<td>Kategorija vodnog tijela:</td>
<td>Stajačica / Lake</td>
</tr>
<tr>
<td>Ekotip:</td>
<td>Nizinska, duboka, srednje velika jezera; Kriptodepresije na karbontanoj podlozi (HR-J_2)</td>
</tr>
<tr>
<td>Površina vodnog tijela:</td>
<td>6.03 km²</td>
</tr>
<tr>
<td>Izmjenjenost:</td>
<td>Prirodno (natural)</td>
</tr>
<tr>
<td>Vodno područje:</td>
<td>Jadranjsko</td>
</tr>
<tr>
<td>Podšiv:</td>
<td>Otoci</td>
</tr>
<tr>
<td>Ekoregija:</td>
<td>Dinaridska</td>
</tr>
<tr>
<td>Države:</td>
<td>Nacionalno (HR)</td>
</tr>
<tr>
<td>Obaveza izvještavanja:</td>
<td>EU</td>
</tr>
<tr>
<td>Tjela podzemne vode:</td>
<td>JOGN-13</td>
</tr>
<tr>
<td>Zaštićena područja:</td>
<td>HR13297001, HR1000033, HR2001358, HROT_71005001</td>
</tr>
<tr>
<td>Mjerne postaje kakvoće:</td>
<td>30120 (površina, Jezero Vrana, Cres)</td>
</tr>
</tbody>
</table>
Slika 3.3-9. Površinsko vodno tijelo JOLN001 Vransko jezero, izvor: Hrvatske vode
Tablica 3.3.3. Stanje površinskog vodnog tijela JOLNO01 Vransko jezero, izvor: Hrvatske vode

<table>
<thead>
<tr>
<th>PARAMETAR</th>
<th>UREDBA NN 73/2013*</th>
<th>STANJE</th>
<th>2021.</th>
<th>NAKON 2021.</th>
<th>POSTIZANJE CILJEVA OKOLIŠA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stanje, konačno</td>
<td>umjereno</td>
<td>umjereno</td>
<td>umjereno</td>
<td>umjereno</td>
<td>procjena nije pouzdana</td>
</tr>
<tr>
<td>Ekološko stanje</td>
<td>umjereno</td>
<td>umjereno</td>
<td>umjereno</td>
<td>umjereno</td>
<td>procjena nije pouzdana</td>
</tr>
<tr>
<td>Kemijalno stanje</td>
<td>umjereno</td>
<td>umjereno</td>
<td>umjereno</td>
<td>umjereno</td>
<td>procjena nije pouzdana</td>
</tr>
<tr>
<td>Ekološko stanje</td>
<td>vrlo dobro</td>
<td>vrlo dobro</td>
<td>vrlo dobro</td>
<td>vrlo dobro</td>
<td>postiže ciljeve</td>
</tr>
<tr>
<td>Fiziološke pokazatelje</td>
<td>vrlo dobro</td>
<td>vrlo dobro</td>
<td>vrlo dobro</td>
<td>vrlo dobro</td>
<td>postiže ciljeve</td>
</tr>
<tr>
<td>Specifične onečišćujuće tvari</td>
<td>vrlo dobro</td>
<td>vrlo dobro</td>
<td>vrlo dobro</td>
<td>vrlo dobro</td>
<td>postiže ciljeve</td>
</tr>
<tr>
<td>Hidromorfološki elementi</td>
<td>vrlo dobro</td>
<td>vrlo dobro</td>
<td>vrlo dobro</td>
<td>vrlo dobro</td>
<td>postiže ciljeve</td>
</tr>
<tr>
<td>Biološki elementi: kalvoće</td>
<td>nema ocjene</td>
<td>nema ocjene</td>
<td>nema ocjene</td>
<td>nema ocjene</td>
<td>nema procjene</td>
</tr>
<tr>
<td>Fiziološki pokazatelje</td>
<td>umjereno</td>
<td>umjereno</td>
<td>umjereno</td>
<td>umjereno</td>
<td>procjena nije pouzdana</td>
</tr>
<tr>
<td>BP5</td>
<td>nema ocjene</td>
<td>nema ocjene</td>
<td>nema ocjene</td>
<td>nema ocjene</td>
<td>nema procjene</td>
</tr>
<tr>
<td>Ukupni dušik</td>
<td>umjereno</td>
<td>umjereno</td>
<td>umjereno</td>
<td>umjereno</td>
<td>procjena nije pouzdana</td>
</tr>
<tr>
<td>Ukupni fosfor</td>
<td>nema ocjene</td>
<td>nema ocjene</td>
<td>nema ocjene</td>
<td>nema ocjene</td>
<td>nema procjene</td>
</tr>
<tr>
<td>Specifične onečišćujuće tvari</td>
<td>vrlo dobro</td>
<td>vrlo dobro</td>
<td>vrlo dobro</td>
<td>vrlo dobro</td>
<td>postiže ciljeve</td>
</tr>
<tr>
<td>arsen</td>
<td>vrlo dobro</td>
<td>vrlo dobro</td>
<td>vrlo dobro</td>
<td>vrlo dobro</td>
<td>postiže ciljeve</td>
</tr>
<tr>
<td>bakar</td>
<td>vrlo dobro</td>
<td>vrlo dobro</td>
<td>vrlo dobro</td>
<td>vrlo dobro</td>
<td>postiže ciljeve</td>
</tr>
<tr>
<td>cirk</td>
<td>vrlo dobro</td>
<td>vrlo dobro</td>
<td>vrlo dobro</td>
<td>vrlo dobro</td>
<td>postiže ciljeve</td>
</tr>
<tr>
<td>krom</td>
<td>vrlo dobro</td>
<td>vrlo dobro</td>
<td>vrlo dobro</td>
<td>vrlo dobro</td>
<td>postiže ciljeve</td>
</tr>
<tr>
<td>fluorid</td>
<td>vrlo dobro</td>
<td>vrlo dobro</td>
<td>vrlo dobro</td>
<td>vrlo dobro</td>
<td>postiže ciljeve</td>
</tr>
<tr>
<td>adsorbili organiši halogeni (AOX)</td>
<td>vrlo dobro</td>
<td>vrlo dobro</td>
<td>vrlo dobro</td>
<td>vrlo dobro</td>
<td>postiže ciljeve</td>
</tr>
<tr>
<td>poliklorirani bifenili (PCB)</td>
<td>vrlo dobro</td>
<td>vrlo dobro</td>
<td>vrlo dobro</td>
<td>vrlo dobro</td>
<td>postiže ciljeve</td>
</tr>
<tr>
<td>Hidromorfološki elementi</td>
<td>dobro</td>
<td>dobro</td>
<td>dobro</td>
<td>dobro</td>
<td>postiže ciljeve</td>
</tr>
<tr>
<td>Hidromorfološki režim</td>
<td>nema procjene</td>
<td>nema procjene</td>
<td>nema procjene</td>
<td>nema procjene</td>
<td>nema procjene</td>
</tr>
<tr>
<td>Kontinuitet toka</td>
<td>nema procjene</td>
<td>nema procjene</td>
<td>nema procjene</td>
<td>nema procjene</td>
<td>nema procjene</td>
</tr>
<tr>
<td>Morfološki režim</td>
<td>nema procjene</td>
<td>nema procjene</td>
<td>nema procjene</td>
<td>nema procjene</td>
<td>nema procjene</td>
</tr>
<tr>
<td>Indeks korištenja (ik)</td>
<td>nema procjene</td>
<td>nema procjene</td>
<td>nema procjene</td>
<td>nema procjene</td>
<td>nema procjene</td>
</tr>
<tr>
<td>Kemijalno stanje</td>
<td>dobro</td>
<td>dobro</td>
<td>dobro</td>
<td>dobro</td>
<td>postiže ciljeve</td>
</tr>
<tr>
<td>Klofironivos</td>
<td>dobro</td>
<td>dobro</td>
<td>dobro</td>
<td>dobro</td>
<td>postiže ciljeve</td>
</tr>
<tr>
<td>Klorpirilos (klorpirilos-eti)</td>
<td>dobro</td>
<td>dobro</td>
<td>dobro</td>
<td>dobro</td>
<td>postiže ciljeve</td>
</tr>
<tr>
<td>Diuron</td>
<td>dobro</td>
<td>dobro</td>
<td>dobro</td>
<td>dobro</td>
<td>postiže ciljeve</td>
</tr>
<tr>
<td>Isopropuron</td>
<td>dobro</td>
<td>dobro</td>
<td>dobro</td>
<td>dobro</td>
<td>postiže ciljeve</td>
</tr>
<tr>
<td>*prema dostupnim podacima</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vodno tijelo JOLNO01 Vransko jezero pripada Jadranškom vodnom području, podslivu Otoci u Dinaridskoj ekoregiji (vidi tablicu 3.3-2.). Konačno stanje vodnog tijela pokazuje umjereno ekološko i dobro kemijsko stanje (vidi tablicu 3.3-3.).

- Priobalno vodno područje Sjeverni dio Kvarnera 0423-KVS i Kvarner-KVA

Tablica 3.3.4. Stanje priobalnih vodnih tijela, izvor: Hrvatske vode

<table>
<thead>
<tr>
<th>VODNO TIJELO</th>
<th>Parametar</th>
<th>Osnovni kvalitetni karakteristici</th>
<th>Hidromorfološki kvalitetni karakteristici</th>
<th>Biološki kvalitetni karakteristici</th>
<th>Analiza opterećenja i utjecaja</th>
<th>Postizanje ciljeva okoliša</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODPADNA</td>
<td>dobro</td>
<td>dobro</td>
<td>dobro</td>
<td>dobro</td>
<td>dobro</td>
<td>postiže ciljeve</td>
</tr>
<tr>
<td>KVS</td>
<td>dobro</td>
<td>dobro</td>
<td>dobro</td>
<td>dobro</td>
<td>dobro</td>
<td>postiže ciljeve</td>
</tr>
<tr>
<td>Kvarner-KVA</td>
<td>dobro</td>
<td>dobro</td>
<td>dobro</td>
<td>dobro</td>
<td>dobro</td>
<td>postiže ciljeve</td>
</tr>
</tbody>
</table>

Priobalna vodna tijela Sjeverni dio Kvarnera 0423-KVS i Kvarner-KVA (slika 3.3.10.) pokazuju ukupno umjereno stanje. Priobalna vodna tijelo Kvarner ima umjereno ekološko i dobro kemijsko stanje dok priobalno vodno tijelo Sjeverni dio Kvarnera ima dobro ekološko stanje te nije postignuto dobro kemijsko stanje (vidi tablicu 3.3.4.).
Legenda:

- Orlec Trinkel Zapad
- vt_p - površinsko vodno tijelo - JOLN001 Vransko jezero
- tpv - podzemno vodno tijelo - JOGN_13 Jadranski otoci - Cres

Slika 3.3-10. Stanje vodnih tijela, izvor: Hrvatske vode
3.3.4.2. Rizik od poplava na području zahvata

Rizika od poplava na području zahvata nema.

3.3.5. Geološka i seizmološka obilježja

U geološkoj građi otoka Cresa prevladavaju sedimentne stijene, tj. vapnencii i dolomiti različitog sastava i otpornosti. Kompaktiji i čistiji vapnenac oblikuje otočne grebene, odnosno dijelove sjevernog i zapadnog dijela Otoka. Na mjestima gdje se vapnenac miješa s dolomitom, kao lakše trošivom stijenom, stvaraju se depresije, to je područje grada Cresa, naselja Martinšćica i Vransko jezero. Obale Otoka su relativno mlade. Njihova raščlanjenost slijedi otočni reljef te je abrazijsko djelovanje relativno malo utjecalo na njihovu transformaciju.

Prema isječku iz geološke karte, lista Cres L 33 – 113, šire područje predmetnog zahvata sastavljeno je od carbonatnih stijena različitog sastava i različite starosti (slika 3.3-11.). Zabilježene su sljedeće litostratigrafske jedinice: Foraminiferski vapnenci, Bijeli i svijetlosivi slabije uslojeni vapnenci, Pretežno dolomiti i Smedii, smeđe – sivi i sivi uslojeni vapnenci. Na samoj lokaciji sunčane elektrane, u građi terena prevladavaju pretežno dolomiti donje i gornje kredne starosti s mogućim lećama breča i vapnenca. To su uglavnom dolomiti u kojima se sporadično javljaju dolomitne breče i vapnenci. Ove naslage izgrađuju veliki dio otoka Cresa, javljaju se u nekoliko odvojenih zona, dinarskog smjera pružanja.

U geotektonskom pogledu područje cijelog lista Cres može se podijeliti u tri tektonska područja: tektonsko područje mirnih struktura, tektonsko područje navlaka i tektonsko područje izoklinalnih bora. Upravo te izoklinalne bore su razvijene u otočnom dijelu. Za Cres je karakteristična zonarna građa, pružanje naslaga sjeverozapad – jugoistok s lokalnim odstupanjima te jaki uzdužni rasjedi.

Na temelju podataka o seizmičnosti Hrvatske i susjednih područja izračunata je i kartama prikazana potresna opasnost za cjelokupni teritorij Hrvatske. Potresna opasnost iskazana je najvećom horizontalnom akceleracijom tla tijekom potresa koja se u prosjeku premašuje jednom u 475 odnosno 95 godina. Procjenjuje se tzv. vjerojatnosnim postupkom gdje se provodi statistička obrada podataka. Osnovni podaci za analizu sadržani su u katalogima potresa.

Izračunati hazard ukazuje na to da su potresima najugroženija područja južne Dalmacije, Hrvatskog primorja te šira okolica Zagreba. Najmanja je opasnost u Istri i na kvarnerskim otocima te u dijelovima Like i Slavonije.

Kartama su prikazana potresom prouzročena horizontalna porodbedna vršna ubrzanja tla (agR) tipa A uz vjerojatnost premašaja od 10 % u 50 godina za povratna razdoblja od 95 i 475 godina. Prema karti za povratno razdoblje od 95 godina (sl. 3.3-12.) područje zahvata pri potresnom udaru može očekivati maksimalno ubrzanje tla od 0,055 g, dok za povratno razdoblje od 475 godina maksimalno ubrzanje tla, prouzročeno potresom, iznosi 0,104 g (sl. 3.3-12.).

Slika 3.3-12. Prikaz potresnog područja lokacije zahvata, izvor: http://seizkarta.gfz.hr/karta.php
3.3.6. Geomorfološka obilježja

Na temelju morfostrukturnih, morfogenetskih, orografskih i litoških karakteristika napravljena je regionalizacija reljefa Hrvatske. U obzir je uzeta i hidrografska mreža, a svaka geomorfološka cjelina izdvojena je po homogenosti područja. Tako se reljef Hrvatske dijeli na tri makrogeomorfološke regije:

1. Panonski bazen,
2. Dinarski gorski sustav i
3. Podmorje jadranskog bazena

Lokacija predmetnog zahvata dio je makrogeomorfološke regije 2. Dinarski gorski sustav, mezogeomorfološke regije 2.2. Istarski poluotok s Kvarnerskim primorjem i arhipelagom, subgeomorfološke regije 2.2.3. Kvarnerski arhipelag i Crkveničko Vinodolsko primorje s Kastavskom zaravni te mikrogeomorfološke regije 2.2.3.3. Otok Cres s arhipelagom (slika 3.3-13.).

Geomorfološki i geotektonski područje otoka Cresa predstavlja izdvojeni i morem odvojeni dio istoćnog krškog pobrđa Istre, odnosno to je morfostrukturni nastavak istočnoistarskog brdskog područja Ćićarije i Učke. Krški reljef je prevladavajući morfogenetski tip reljefa na otoku Cresu. Zbog svoje ljuskave strukture, uzdužnih rasjeda, pukotinskog sastava i korozije podloga je idealna za razvoj površinskih i podzemnih krških reljefnih oblika. Prevladavajući površinski oblici na području Otoka su ponikve koje predstavljaju ljevkaste, tanjuraste ili bunaraste udubine u kršu, dok se u krškom podzemlju nalaze brojni speleološki objekti. Prema (Buzjak, 1997.) na cijelom otoku Cresu poznate su 42 speleološke pojave. Obalni reljef prati raščlanjenost reljefa otoka te je pod utjecajem abrazijskog djelovanja. Sukladno tome razlikuju se niske obale nastale destrukcijom i akumulacijom te visoke i strme obale na istočnoj strani Otoka.
3.3.7. Pedološka obilježja

Lokacija predmetnog zahvata nalazi se dijelom na kamenjaru a dijelom na dolomitnim tlima.

3.3.8. Bioraznolikost i zaštita prirode

3.3.8.1. Fauna

Životinjske vrste i zajednice otoka Cresa uvjetovane su s dvije ključne odrednice: mediteranskom klimom i otočnom izoliranošću. Fauna otoka Cresa odgovara fauni drugih većih mediteranskih otoka, no ima i svoje specifičnosti u pojedinim vrstama po kojima se razlikuje od drugih otoka.

Na užem području zahvata pridolaze vrste čija je zona najčešće cijeli otok. Za samu lokaciju ne postoje istraživanja, ali postoje podaci o fauni otoka za koju možemo ustvrditi da je manje ili više prisutna diljem otoka, pa tako povremeno i na lokaciji planiranog zahvata.

Krški prostor dračika, suhih travnjaka i mediteranskih šuma, te lokvi i velikog jezera u središnjem dijelu otoka daju značajnu bioraznolikost. Kad govorimo o beskralješnjacima, fokusirajući se na lokaciju zahvata, moramo naglasiti dominantnu zastupljenost raznih redova kukaca: ravnokrilci, opnokrilci, konjaši, raznokrilci, dvokrilci, vretenca, polukrilci, leptiri i drugi.

Ravnokrilci (Orthoptera) i polukrilce (Homoptera) su osobito specifični za mediteranski krš gdje populacije nekih vrsta proizvodnjom zvuka daju prostoru mediterana specifičnu akustičnu atmosferu. U ravnokrilce spadaju skakavci (*slika 3.3-14.*), zrikavci, konjici, šturci, šaške, i drugi, a najpoznatije skupine polukrilca su cvrčići i stjenice.

Slika 3.3-14. Mali dio raznolikosti ravnokrilaca na širem području zahvata (foto: R. Španić, 2014)
Od značajnih vrsta kukaca moramo spomenuti vrste kornjaša koje na području kvarnerskih otoka predstavljaju ciljne vrste očuvanja ekološke mreže "Otok Cres" (HR2001358): hrastova strizibuba (Cerambyx cerdo), jelenak (Lucanus cervus) (slika 3.3-15.), četveropjega cvilidreta (Morimus funereus) i mirešljavi samotar (Osmotherma barnabita) te noćni leptir koji je aktivan danju - danja medonjica (Euplagia quadripunctaria).

Slika 3.3-15. Jelenak (Lucanus cervus) na širem području zahvata (foto: R. Španić, 2014)

Leptiri i vretenca (slika 3.3-16.), su i na otoku Cresu kao i u drugim dijelovima Hrvatske ponajbolje istraživane skupine kukaca. Cres je sa 77 zabilježenih vrsta (Koren i sur. 2015), nakon Krka, drugi hrvatski otok po raznolikosti danjih leptira.

Slika 3.3-16. Česte vrste vretenaca na na širem području zahvata Orthetrum cancellatum (lijevo) i Crocothemis erythraea (desno) (foto: R. Španić, 2014)

Na Cresu žive neke vrste vodozemaca i gmazova kojih nema na drugim mediteranskim otocima. Bufo bufo (smeđa krastača) i Alygroides nigropunctatus (mrki gušter) žive jedino na Cresu, Krku i Rabu, Triturus vulgaris meridionalis (mali vodenjak), Bombina variegata (žuti mukač), Rana dalmatina (šumska smeđa žaba) i Anguis fragilis (sljepić) dolaze samo na Cresu i Krku, a jedino na Cresu, od svih mediteranskih otoka, zabilježene su vrste Podarcis muralis (zidna gušterica) i Lacerta viridis (obični zelembać) (Tvrtković 1993).

Šire područje zahvata nastanjuje manji broj vrsta vodozemaca vezanih za pojedinačne lokve u kršu, dok je područje krških suhih travnjaka i dračika vrlo povoljno stanište gmazova. Na Cresu je
zabilježeno 7 vrsta vodozemaca (6 vrsta žaba i 1 vodenjak), 24 vrste gmazova (među njima ih je 5 sa Crvenog popisa Hrvatske), od čega su 10 vrsta zmije, ali niti jedna nije otrovna (Sušić i Radek, 2007).

Cres je obitavalište za više od 200 vrsta ptica, među kojima su njih 99 vrsta gnjezdarice, što je najviše od svih Jadranskih otoka. Među njima je jedna na Crvenom popisu kritično ugroženih vrsta (bjeloglavi sup), jedna na popisu ugroženih vrsta (suri orao), te njih tri (zmijar, sivi sokol i škanjac osaš) na popisu rizičnih vrsta, kojima također u Hrvatskoj prijeti izumiranje. Još su 34 vrste na popisu ugroženih vrsta na nacionalnoj razini. (Sušić i Radek, 2007).

Na Kvarneru se gnijezde bjeloglavi supovi na liticama čije se visine uglavnom kreću od 20 do 50 metara na Cresu (izuzetak su dvije litice koje dosižu visinu od 190 metara), a najniže je gnijezdo 12 mnv dok je najviše na 186 mnv. Osim na Cresu, gnijezdeće su kolonije i na liticama otoka Plavnika, prosječno nižima nego na Cresu, te otoka Krka i Prvića (gnijezda su prosječno na većim visinama od mora, a i same litice su znatno više od onih na Cresu).

Faunu sisavaca predstavljaju 35 vrsta sisavaca, od kojih je 12 na Crvenom popisu (od toga 15 vrsta šišmiša, kojih je 8 na Crvenom popisu). Neki od njih su: Martes foina (kuna bjelica), Glis glis (puh) koji gnijezda pravi i u suhozidovima, šišmiši, Nyctalus leisleri (mali večernjak), Pipistrellus nathusii (mali šumski šišmiš), Rhinolophus hipposideros (mali potkovnjak), Rhinolophus ferumeqinum (veliki potkovnjak), Pipistrellus kuhlli (bjelorubni kapucan), Erinaceus europaeus (jež), Talpa europaea (krtica), Crocidura suaveolens (poljska rovka), Mus (musculus) domesticus (kućni miš), Apodemus sylvaticus (obični šumski miš), Pipistrellus kuhlli (bjelorubni kapucan), Erinaceus europaeus (jež), Talpa europaea (krtica), Crocidura suaveolens (poljska rovka), Mus (musculus) domesticus (kućni miš), Apodemus sylvaticus (obični šumski miš), Lepus europaeus (poljski zec), Axis axis (jelen aksis), Dama dama (jelen lopatar), Sus scrofa (divlja svinja), Capreolus capreolus (srna obična), Meles meles (euroazijski javor) i drugi.

3.3.8.2. Staništa i vegetacija

Na otoku Cresu raste više od 1350 različitih biljnih vrsta. Među njima su i 43 vrste orhideja, od kojih je čak 23 uvršteno na Crvenom popisu ugroženih biljaka prema IUCN kriterijima). Cres bismo mogli slobodno nazvati i otokom mlječika sa čak 19 vrsta. Poznat je i po kadulji, ali iznenađuje da ovdje raste čak 6 vrsta kadulja, 9 vrsta ljubica, 7 vrsta divljih ruža i čak 6 vrsta hrastova. Kopljastoli zvinčac i crljena sapunika u Hrvatskoj se smatraju kritično ugroženim biljnim vrstama, a svoje su utocište našle na Cresu. Osim ove dvije kritično ugrožene, još je 53 biljnih vrsta koje obitavaju na Cresu uvršteno na popisi ugroženih svojti u Hrvatskoj. (Sušić i Radek, 2007).

Prema Karti staništa Republike Hrvatske iz 2016.g. (sljek 3.3-17.), veći dio obuhvata zahvata (oko 60%) SE Orlec Trinket – zapad dolazi na stanišnom tipu:
- C.3.5./E.3.5. Submediteranski i epimediteranski suhi travnjaci /Primorske termofilne šume.

Manjim dijelom (oko 40%), obuhvat zahvata zauzima stanišni tip:
- C.3.5./D.3.1. Submediteranski i epimediteranski suhi travnjaci/Dračici

Terenskim obilaskom lokacije na samom području zahvata utvrđena je prisutnost stanišnog tipa Submediteranski i epimediteranski suhi travnjaci C.3.5, koji je u najvećoj mjeri zastupljen u uznapredovalom stadiju sukcesije s vrstom Juniperus oxycedrus. Kao jedan od glavnih razloga
ugroženosti ovog stanišnog tipa navode se sukcesijske promjene uslijed napuštanja tradicionalnih metoda održavanja travnjaka (ispaša) kao što je slučaj i na samom lokalitetu buduće solarne elektrane.

Slika 3.3-17. Lokacija zahvata u odnosu na kartu staništa (Izvor podloge: Bioportal, 2016)

Zastupljeni stanišni tipovi su opisani u nastavku prema Nacionalnoj klasifikaciji staništa:

sklopu mediteransko-montanog pojasa i svuda, gdje je zastupljena većim stupnjem pokrovnosti predstavlja posebni stadij u razvitku dračika. (*slika 3.3-19.*).

Slika 3.3-18. Submediteranski i epimediterski suhi travnjaci na lokaciji zahvata
Elaborat zaštite okoliša za ocjenu potrebi procjene utjecaja zahvata na okoliš

Izgradnja sunčane elektrane Orlec Trinket - zapad

Slika 3.3-19. Tipična slika submediteranskih i epimediteranskih suhih travnjaka na lokaciji zahvata ugroženih zaraštavanjem u grmoliku vegetaciju

Slika 3.3-20. Izgled šume hrasta medunca u udolinama u obuhvatu zahvata, izuzetih od smještaja panela

Izgradnja sunčane elektrane Orlec Trinket - zapad
3.3.8.3. Zaštićena područja prirode

Predmetni zahvat smješten je izvan granica zaštićenih područja prirode temeljem Zakona o zaštiti prirode (NN 80/13, 15/18).

Najbliže zaštićeno područje je posebni rezervat (ornitološki) Mali bok - Koromačna nalazi se na udaljenosti od oko 3,5 km jugoistočno od lokacije predmetnog zahvata (slika 3.3-21.). Područje je značajno za očuvanje bjeloglavog supa, a površina mu je 796,64 ha.

Iduće po udaljenosti (oko 17 km) je posebni rezervat Fojiška - Podpredošćica.

Slika 3.3-21. Lokacija zahvata u odnosu na zaštićena područja prirode
3.3.8.4. Ekološka mreža

Područje zahvata nalazi se unutar ekološke mreže Natura 2000 (slika 3.3-22.) i to unutar područja očuvanja značajnog za vrste i stanišne tipove (POVS):

- Otok Cres (HR2001358);

i područja očuvanja značajnog za ptice (POP):

- Kvarnerski otoci (HR1000033).

Slika 3.3-22. Lokacija zahvata u području ekološke mreže Natura 2000

Za zahvat „SE Orlec Trinket – istok“ koji je udaljen oko 1000 m istočno od predmetnog zahvata proveden je postupak Glavne ocjene prihvatljivosti zahvata za ekološku mrežu.

Za potrebe izrade Glavne ocjene prihvatljivosti zahvata za ekološku mrežu stručni tim biologa Instituta za istraživanje i razvoj održivih ekosustava (IRES) s vanjskim suradnicima za ptice i staništa obavio je terensko istraživanje lokacije predmetnog zahvata u svrhu prikupljanja podataka o stvarnom stanju okoliša na lokaciji zahvata te potvrđivanja prisutnosti ciljeva očuvanja područja ekološke mreže „Otok Cres“ (HR2001358) i „Kvarnerski otoci“ (HR1000033), kao i ocjenjivanja njihovog stanja na području mogućeg utjecaja zahvata.

Stručni tim obavio je terenski obilazak lokacije zahvata krajem svibnja (Tablica 3.3-5.) imajući u vidu aktivnost ciljeva očuvanja te period cvatnje biljaka. Prije samog terenskog izlaska konzultirana je dostupna stručna i znanstvena literatura s naglaskom na ekološke zahteve ciljnih vrsta područja ekološke mreže, kao i dostupni podaci o rasprostranjenosti ciljnih stanišnih tipova i vrsta na području zahvata.

Terenski rad temeljio se na rekognosciranju terena prilikom čega je pozornost bila usmjerena na ciljeve očuvanja koji potencijalno mogu biti zahvaćeni planiranim zahvatom. Sve točke pregleda terena prikazane su na slikama 3.3-23. i 3.3-24. Posjećena je dijelom i lokacija za buduću "SE Orlec Trinket – zapad" (Slika 3.3-23.).

<table>
<thead>
<tr>
<th>Vremenski period</th>
<th>Područje istraživanja</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.-27.5.2016.</td>
<td>Botanička istraživanja</td>
</tr>
<tr>
<td></td>
<td>Faunistička istraživanja – herpetofuna (vodozemci i gmazovi), sisavci (šišmiši i ostali), kukci (kornjaši i leptir danja medonjica)</td>
</tr>
<tr>
<td>19.-20.5.2016.</td>
<td>Ornitolološka istraživanja - ptice</td>
</tr>
</tbody>
</table>

Ciljano ornitolološko istraživanje je provedeno u dva navrata, tijekom svibnja i lipnja s uključenim noćnim terenom od strane ornitologa Udruge BIOM. Dnevnii dio terena se bazirao na popisivanju vrsta ptica nespecifičnom metodom „area search“, dok je u jutarnjim satima obiđeno 10 točaka prebrojavanja (point count) na kojim se brojalo po 6 minuta te su se ptice bilježile u tri pojasa: 1. 0-50m; 2. 50-100m i 3. >100m (Slika 3.3-24.). Tijekom sumraka i noću istražene su noćne/krepuskularne vrste. Zapadna ploha buduće SE Orlec je ornitolološkim istraživanjima obuhvaćena samo jednom tijekom lipnja.
Slika 3.3-23. Lokacije na području istočne i zapadne SE Orlec Trinket obiđene 26.-27.5.2016. za istraživanje prisustva ciljnih divljih vrsta i staništa ekološke mreže „Otok Cres“

Ciljevi očuvanja područja „Otok Cres“ (HR2001358) koji potencijalno dolaze na lokaciji zahvata prema procjeni u Glavnoj ocjeni prihvatljivosti zahvata za ekološku mrežu navedeni su u Tablici 3.3.-6., a ciljevi očuvanja područja „Kvarnerski otoci“ (HR1000033) koji potencijalno dolaze na lokaciji zahvata navedeni su u Tablici 3.3.-7.

Tablica 3.3.-6. Ciljevi očuvanja područja „Otok Cres“ (HR2001358) koji potencijalno dolaze na terenu (masnim slovima označene su vrste uočene terenskim obilaskom)

<table>
<thead>
<tr>
<th>NATURA KOD</th>
<th>Znanstveni naziv</th>
<th>Hrvatski naziv</th>
</tr>
</thead>
<tbody>
<tr>
<td>6199</td>
<td>Euplagia quadripunctaria</td>
<td>Danja medonjica</td>
</tr>
<tr>
<td>1089</td>
<td>Morimus funereus</td>
<td>Četveropjega cvilidreta</td>
</tr>
<tr>
<td>4104</td>
<td>Himantoglossum adriaticum</td>
<td>Jadranska kozonoška</td>
</tr>
<tr>
<td>1307</td>
<td>Myotis blythii</td>
<td>Oštrouhi šišmiš</td>
</tr>
<tr>
<td>1306</td>
<td>Rhinolophus blasii</td>
<td>Blazijev potkovnjak</td>
</tr>
<tr>
<td>1305</td>
<td>Rhinolophus euryale</td>
<td>Južni potkovnjak</td>
</tr>
<tr>
<td>1304</td>
<td>Rhinolophus ferrumequinum</td>
<td>Veliki potkovnjak</td>
</tr>
<tr>
<td>1303</td>
<td>Rhinolophus hipposideros</td>
<td>Mali potkovnjak</td>
</tr>
<tr>
<td>1279</td>
<td>Elaphe quatuorlineata</td>
<td>Četveropruži kravosas</td>
</tr>
<tr>
<td>1293</td>
<td>Elaphe situla</td>
<td>Crvenkrpica</td>
</tr>
<tr>
<td>62A0</td>
<td>Istočno submediteranski suhi travnjaci</td>
<td></td>
</tr>
<tr>
<td>3170</td>
<td>Mediteranske povremene lokve</td>
<td></td>
</tr>
</tbody>
</table>

Tablica 3.3.-7. Ciljevi očuvanja područja „Kvarnerski otoci“ (HR1000033) koji potencijalno dolaze na terenu (masnim slovima označene su vrste uočene terenskim obilaskom)

<table>
<thead>
<tr>
<th>NATURA KOD</th>
<th>Znanstveni naziv</th>
<th>Hrvatski naziv</th>
<th>Pretpostavljen način korištenja prostora</th>
</tr>
</thead>
<tbody>
<tr>
<td>A109</td>
<td>Alectoris graeca</td>
<td>Jarebica kamenjarka</td>
<td>Gniježđenje</td>
</tr>
<tr>
<td>A255</td>
<td>Anthus campestris</td>
<td>Primorska trepteljka</td>
<td>Gniježđenje</td>
</tr>
<tr>
<td>A091</td>
<td>Aquila chrysaetos</td>
<td>Suri orao</td>
<td>Lov</td>
</tr>
<tr>
<td>A215</td>
<td>Bubo bubo</td>
<td>Ušara</td>
<td>Gniježđenje / lov</td>
</tr>
<tr>
<td>A133</td>
<td>Burhinus oedicnemus</td>
<td>Čukavica</td>
<td>Gniježđenje</td>
</tr>
<tr>
<td>A243</td>
<td>Calandrella brachydactyla</td>
<td>Kratkoprsta ševa</td>
<td>Gniježđenje</td>
</tr>
<tr>
<td>A224</td>
<td>Caprimulgus europaeus</td>
<td>Leganj</td>
<td>Gniježđenje</td>
</tr>
<tr>
<td>A080</td>
<td>Circaetus gallicus</td>
<td>Zmijar</td>
<td>Gniježđenje / lov</td>
</tr>
<tr>
<td>A095</td>
<td>Falco naumanni</td>
<td>Bjelonokta vjetruša</td>
<td>Lov / prelet</td>
</tr>
<tr>
<td>A103</td>
<td>Falco peregrinus</td>
<td>Sivi sokol</td>
<td>Lov / prelet</td>
</tr>
<tr>
<td>A097</td>
<td>Falco vespertinus</td>
<td>Crvenonoga vjetruša</td>
<td>Lov / prelet</td>
</tr>
<tr>
<td>A078</td>
<td>Gyps fulvus</td>
<td>Bjeloglavi sup</td>
<td>Hranjenje</td>
</tr>
<tr>
<td>A338</td>
<td>Lanius collurio</td>
<td>Rusi svračak</td>
<td>Gniježđenje</td>
</tr>
<tr>
<td>A246</td>
<td>Lulula arborea</td>
<td>Ševa krunica</td>
<td>Gniježđenje</td>
</tr>
<tr>
<td>A072</td>
<td>Pernis apivorus</td>
<td>Škanjac osaš</td>
<td>Hranjenje</td>
</tr>
</tbody>
</table>
3.3.8.4.1. „Otok Cres“ (HR2001358)

Otok Cres nalazi se na sjevernom dijelu Jadranскog mora i s povšinom of 405,78 km² je najveći otok u Hrvatskoj. Cres je nekad u povijesti bio povezan s otokom Lošinjem tankom prevlakom, ali je kasnije prokapan kanal kojim su otoci odvojeni. Na otoku se nalazi slatkovodno jezero Vrana koje je kriptodepresija. Na sjevernom dijelu otoka prevladava submediteranska klima, a na srednjem i južnom mediteranska. To je i pogodovalo različitom razvoju staništa, pa tako na sjevernom dijelu prevladavaju Šume, dok na srednjem i južnom dijelu dominira makija. Ciljne vrste i staništa očuvanja područja ekološke mreže "Otok Cres" (HR2001358) navedeni su u *Tablica 3.3-5.*

Tablica 3.3-5. Ciljne vrste očuvanja područja ekološke mreže "Otok Cres" (HR2001358); Kategorija ugroženosti ciljnih vrsta ekološke mreže u području (CR – kritično ugrožena, EN – ugrožena, VU – ranjiva vrsta, NT – gotovo ugrožena vrsta, DD – nedovoljno poznata vrsta, LC – najmanje zabrinjavajuća vrsta, NA – nema podataka)

<table>
<thead>
<tr>
<th>Divlje vrste</th>
<th>Kategorija ugroženosti prema Crvenim knjigama/popisima ugroženih vrsta</th>
<th>Zakonska zaštita prema Pravilniku o strogo zaštićenim vrstama</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beskralježnjaci</td>
<td></td>
<td></td>
</tr>
<tr>
<td>primorski rak (Austropotamobius pallipes)</td>
<td></td>
<td>SZ</td>
</tr>
<tr>
<td>hrastova strizibuba (Cerambyx cerdo)</td>
<td></td>
<td>SZ</td>
</tr>
<tr>
<td>dana medonjica (Euplagia quadripunctaria)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>jelenak (Lucanus cervus)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>četveropjega cvilidreta (Morimus funereus)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mirešjavi samotar (Osmoderma barnabita)</td>
<td></td>
<td>SZ</td>
</tr>
<tr>
<td>pužić uskoušćan (Vertigo angustior)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gmazovi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>četveroprugi kravosas (Elaphe quatuorlineata)</td>
<td></td>
<td>NT</td>
</tr>
<tr>
<td>crvenkripica (Elaphe situla)</td>
<td></td>
<td>NT</td>
</tr>
<tr>
<td>kopnena kornjača (Testudo hermanni)</td>
<td></td>
<td>NT</td>
</tr>
<tr>
<td>Sisavci</td>
<td></td>
<td></td>
</tr>
<tr>
<td>oštrouhi šišmiš (Myotis blythii)</td>
<td></td>
<td>SZ</td>
</tr>
<tr>
<td>Blazijev potkovnjak (Rhinolophus blasii)</td>
<td></td>
<td>VU</td>
</tr>
<tr>
<td>južni potkovnjak (Rhinolophus euryale)</td>
<td></td>
<td>VU</td>
</tr>
<tr>
<td>veliki potkovnjak (Rhinolophus ferrumequinum)</td>
<td></td>
<td>NT</td>
</tr>
<tr>
<td>mali potkovnjak (Rhinolophus hipposideros)</td>
<td></td>
<td>NT</td>
</tr>
<tr>
<td>Biljke</td>
<td></td>
<td></td>
</tr>
<tr>
<td>jadranska kozonoška (Himantoglossum adriaticum)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staništa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zajednica polegle mlječike i primorske makovice (1210)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Površine stjenovitih obala pod halofitima (1240)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muljevite i pjeskovite obale obraske vrstama roda Salicornia i drugim jednogodišnjim halofitima (1310)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mediteranske sitine (Juncetalia maritimi) (1410)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mediteranske i termoatlantska vegetacija halofitnih grmova (Sarcocornetea fruticosi) (1420)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mediteranske povremene lokve (3170)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Istočno submediteranski suhi travnjaci (Scorzoneretalia villosae) (62A0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karbonatne stijene sa hazmofitskim vegetacijom (8210)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Špilje i jame zatvorene za javnost (8310)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Šume pitomog kestena (9260)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vazdazelene šume česmine (Quercus ilex) (9340)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Izgradnja sunčane elektrane Orlec Trinket - zapad

59
3.3.8.4.2. „Kvarnerski otoci“ (HR1000033)

Područje obuhvaća velike otoke sjevernog Jadrana (Cres, Krk i Rab) i okolne manje otoke s ukupnom površinom od 114.147,9 ha. Područje se ističe kao jedno od posljednjih gnjezdilišta bijeloglavih supova u Hrvatskoj (na liticama), ali i kao važno gnjezdilište za ostale ptice (grabljive, morski vranac). Unutar područja izdvajaju se prostrana otvorena i mještovita staništa (suhi travnjaci) koji su od velike važnosti za supove i grabljive. Osim travnjaka, područje obuhvaća nekoliko tipova mediteranskih šuma i šikara, kao i lukvegetacije na kojima se zadržavaju migratorne ptice močvarice.

Ciljne vrste očuvanja područja ekološke mreže "Kvarnerski otoci" (HR1000033) navedene su u **Tablici 3.3-6**.

Tablica 3.3-6. Ciljne vrste očuvanja područja ekološke mreže "Kvarnerski otoci" (HR1000033); Kategorija ugroženosti ciljnih vrsta ekološke mreže u području (CR – kritično ugrožena, EN – ugrožena, VU – ranjiva vrsta, NT – gotovo ugrožena vrsta, DD – nedovoljno poznata vrsta, LC – najmanje zabrinjavajuća vrsta, NA – nema podataka)

<table>
<thead>
<tr>
<th>Vrsta</th>
<th>Kategorija ugroženosti prema Crvenoj knjizi ptica RH (2013)</th>
<th>Gnjezdeća populacija</th>
<th>Zimujuća (z) i preletnička (p) populacija</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vodomar (Alcedo atthis)</td>
<td></td>
<td>NA (z)</td>
<td></td>
</tr>
<tr>
<td>Jarebica kamenjarka (Alectoris graeca)</td>
<td></td>
<td>NT</td>
<td></td>
</tr>
<tr>
<td>Primorska trepteljka (Anthus campestris)</td>
<td></td>
<td>LC</td>
<td></td>
</tr>
<tr>
<td>Suri orao (Aquila chrysaetos)</td>
<td></td>
<td>CR</td>
<td></td>
</tr>
<tr>
<td>Bukavac (Botaurus stellaris)</td>
<td></td>
<td>NA (p)</td>
<td></td>
</tr>
<tr>
<td>Ušara (Bubo bubo)</td>
<td></td>
<td>NT</td>
<td></td>
</tr>
<tr>
<td>Čukavica (Burhinus oedicnemus)</td>
<td></td>
<td>EN</td>
<td></td>
</tr>
<tr>
<td>Kratkoprst ševa (Calandrella brachydactyla)</td>
<td></td>
<td>VU</td>
<td></td>
</tr>
<tr>
<td>Legan (Caprimulacus europaeus)</td>
<td></td>
<td>LC</td>
<td></td>
</tr>
<tr>
<td>Zmijatar (Circetinis gallicus)</td>
<td></td>
<td>VU</td>
<td></td>
</tr>
<tr>
<td>Eja strnjarica (Circus cyaneus)</td>
<td></td>
<td>LC (z)</td>
<td></td>
</tr>
<tr>
<td>Crna žuna (Dryocopus martius)</td>
<td></td>
<td>LC</td>
<td></td>
</tr>
<tr>
<td>Mala bijela čaplja (Egretta garzetta)</td>
<td></td>
<td>NA (p)</td>
<td></td>
</tr>
<tr>
<td>Vrtna strnadica (Emberiza hortulana)</td>
<td></td>
<td>LC</td>
<td></td>
</tr>
<tr>
<td>Krški sokol (Falco biarmicus)</td>
<td></td>
<td>CR</td>
<td></td>
</tr>
<tr>
<td>Mali sokol (Falco columbarius)</td>
<td></td>
<td>VU (z)</td>
<td></td>
</tr>
<tr>
<td>Eleonorin sokol (Falco eleonorae)</td>
<td></td>
<td>EN</td>
<td></td>
</tr>
<tr>
<td>Bjelokrak vjetruša (Falco naumanni)</td>
<td></td>
<td>CR</td>
<td></td>
</tr>
<tr>
<td>Sivi sokol (Falco peregrinus)</td>
<td></td>
<td>VU</td>
<td></td>
</tr>
<tr>
<td>Crvenonoga vjetruša (Falco vespertinus)</td>
<td></td>
<td>DD (p)</td>
<td></td>
</tr>
<tr>
<td>Crvenogri plijenor (Gavia arctica)</td>
<td></td>
<td>NA (z)</td>
<td></td>
</tr>
<tr>
<td>Crvenogri plijenor (Gavia stellaris)</td>
<td></td>
<td>LC (z)</td>
<td></td>
</tr>
<tr>
<td>Ždral (Grus grus)</td>
<td></td>
<td>LC (p)</td>
<td></td>
</tr>
<tr>
<td>Bjeloglavi sup (Gyps fulvus)</td>
<td></td>
<td>EN</td>
<td></td>
</tr>
<tr>
<td>Prugast orao (Hieraetus fasciatus)</td>
<td></td>
<td>CR</td>
<td></td>
</tr>
<tr>
<td>Čapljica voljak (Ixobrychus minutus)</td>
<td></td>
<td>LC (p)</td>
<td></td>
</tr>
<tr>
<td>Rusi svračak (Lanius collurio)</td>
<td></td>
<td>NA (p)</td>
<td></td>
</tr>
<tr>
<td>Sivi svračak (Lanius minor)</td>
<td></td>
<td>LC</td>
<td></td>
</tr>
<tr>
<td>Ševa krunica (Lullula arborea)</td>
<td></td>
<td>LC</td>
<td></td>
</tr>
<tr>
<td>Škanjac osaš (Pernis apivorus)</td>
<td></td>
<td>NT</td>
<td></td>
</tr>
<tr>
<td>Morski vranac (Phalacrocorax aristotelis desmarestii)</td>
<td></td>
<td>LC</td>
<td></td>
</tr>
</tbody>
</table>
Sve navedene vrste ptica su ujedno strogo zaštićene vrste u Hrvatskoj temeljem Zakona o zaštiti prirode i Pravilnika o strogo zaštićenim vrstama.

3.3.9. Krajobrazna obilježja

Prema Studiji krajobraza Otoka Cresa cijeli otok podijeljen je na šest krajobraznih cjelina (slika 3.3-25.).

Lokacija predmetnog zahvata nalazi se u krajobraznoj jedinici 5.1. Središnji kamenjarski pašnjaci koja nje dio veće krajobrazne cjeline 5. Središnja pašnjačka zaravan (slika 3.3-25.)

Teren na lokaciji zahvata je uglavnom nagnut prema sjeveru, blagog nagiba. Izuzetak su manji dijelovi terena na samom sjeveru lokacije te u podnožju uzvišenja Prvećna jugu lokacije koji su orijentirani na jug, istok i zapad. Sjeverozapadni rub lokacije je vrlo strm s nagibom na sjeverozapad.
3.3.10. Kulturno – povijesna baština

S obzirom da zahvat nema utjecaja na šire područje u smislu mogućnosti stvaranja fizičkih oštećenja na objektima, promatrano područje za kulturno-povijesnu baštinu je uzeto kao zona 500 m oko granica obuhvata zahvata. U toj zoni nisu evidentirana kulturno-povijesna dobra ili arheološka nalazišta.

Elaborat zaštite okoliša za ocjenu o potrebi procjene utjecaja zahvata na okoliš

graditeljstva gdje se ističu brojne kapele i ostaci kapela. Od arheoloških lokaliteta nalazimo prapovijesne pećinske objekte: Beli, Petričevi: arheološka zona Banićeva pećine i Čampari te brojne prapovijesne gradine, etnološko zaseoci i pastirski stanovi. Od zaštićene pokretne kulturno – povijesne baštine ističe se brojnost crkvenog inventara, arheološka zbirka amfora s rta Pernat i arheološka zbirka. Na otoku Cresu nalazi se najstariji hrvatski spomenik Valunska ploča, pisana glagoljicom u XI. st.

3.3.11. Gospodarska obilježja

Prema podacima od DZS-a najveći broj stanovnika radi u terciarnom sektoru i to većina u turizmu koji ima vrlo dobre predispozicije za daljnji razvoj. Jedan od važnijih čimbenika razvoja turizma je prometna povezanost. Naselja otoka Cresa međusobno su povezana asfalistnim cestama, manji dio makadamskom cestom. Također bitna je uloga blizine međunarodne luke na Krku te redovne trajektne linije s kopnom. Turizam je ključna djelatnost otoka Cresa koja djeluje na razvoj ostalih gospodarskih, javnih, kulturnih i sportskih aktivnosti. Stanovništvo otoka još se uvijek bavi poljoprivredom, najčešće maslinarstvom, ribolovom i stočarstvom. Iako je poljoprivreda u današnje vrijeme vrlo ometana, postoji kombinacija maslinarstva s ispašom ovaca. Bitno je spomenuti i ulogu brodogradilišta koji uz znakove poteškoće i napore u brodogradnji u Hrvatskoj općenito, ipak uspijeva održati zaposlenost stanovništva na otoku tijekom cijele godine.

Lokacija zahvata nalazi se na prostoru Zajedničkog županijskog lovišta VIII/108 – Cres (slika 3.3-26.).

Slika 3.3-26. Lokacija zahvata na karti Zajedničkih otvorenih lovišta, izvor: www.lovacki-savez-pgz.hr
4. OPIS MOGUĆIH ZNAČAJNIH UTJECAJA ZAHVATA NA OKOLIŠ

4.1. Sažeti opis mogućih utjecaja zahvata na sastavnice okoliša

4.1.1. Utjecaji na stanovništvo i ljudsko zdravlje

Utjecaji tijekom građenja

Tijekom izgradnje sunčane elektrane izvodit će se građevinski radovi kao što su formiranje pristupnih puteva, kopanje temelja nosive konstrukcije solarnih panela, kopanje rova za polaganje podzemnih kabela, betonski radovi te postavljanje i montaža konstrukcija i elektropreme. Zbog svega toga doći će do privremenog onečišćenja zraka prašinom i ispušnim plinovima od transportnih sredstva i građevinskih strojeva. Navedena opterećenja okoliša smatraju se manje značajnima i bez posljedica na zdravlje ljudi jer su prvi naseljeni prostori udaljeni cca 2 km zračne linije od same lokacije zahvata te se radi o kratkotrajnim utjecajima.

Utjecaji tijekom korištenja

Sam rad sunčevih fotonaponskih ploča ekološki je prihvatljiv. Za vrijeme rada elektrane nema otpadnih tvari niti se proizvode štetni plinovi, stoga negativnog utjecaja na stanovništvo i ljudsko zdravlje nema.

4.1.2. Utjecaji na kvalitetu zraka

Utjecaji tijekom građenja

Tijekom izgradnje sunčane elektrane utjecaj na kvalitetu zraka može imati stvaranje prašine od građevinskih radova te ispuštanje plinova iz transportnih sredstva i građevinskih strojeva. Utjecaj je vremenski ograničen i lokaliziran na područje gradilišta te nije značajan.

Utjecaji tijekom korištenja

Pri radu fotonaponskih ćelija ne proizvode se staklenički plinovi te nema štetnih emisija u okoliš. S obzirom na projektom previdenu tehnologiju dobivanja električne energije iz pretvorbe energije sunca, bez korištenja nekih od neobnovljivih izvora električne energije, negativnog utjecaja na kvalitetu zraka nema. Ako promatramo kvalitetu zraka prilikom rada elektrane možemo imati samo pozitivan utjecaj na okoliš zbog smanjenje uporabe fosilnih goriva te sukladno tome smanjene emisije stakleničkih plinova.

4.1.3. Utjecaji na klimu

Utjecaj zahvata na klimatske promjene

Utjecaji tijekom izgradnje zahvata

Utjecaja zahvata na klimatske promjene tijekom izgradnje nema. Ispušni plinovi iz transportnih vozila i građevinske mehanizacije neće utjecati na klimatske promjene jer su radovi privremeni i lokalni. S obzirom na cijeli životni vijek jedne sunčane elektrane i CO₂ neutralnost fotonaponskih sustava nužno je spomenuti proizvodnju materijala za izradu fotonaponskih ćelija. Proces dobivanja
monokristaličnih modula koristeći silicij energetski je vrlo zahtjevovan proces. Ali ako usporedimo utjecaje ostalih elektrana na neobnovljive izvore energije, sunčane elektrane nemjerljivo manje opterećuju okoliš, pa time i nemaju utjecaj na klimatske promjene.

Utjecaji tijekom korištenja

Prilikom samog rada sunčanih elektrana odnosno transformacije sunčeve energije putem fotonaponskih modula, ne proizvode se staklenički plinovi. Zbog toga fotonaponske ćelije imaju pozitivan utjecaj na okoliš te se njihovom upotrebom smanjuju emisije stakleničkih plinova koji utječu ne samo lokalno već i globalno na klimatske promjene.

Utjecaj klimatskih promjena na zahvat

Utjecaj klimatskih promjena na predmetni zahvat procjenjuje se prema smjernicama za voditelje projekta: Kako povećati otpornost ranjivih ulaganja na klimatske promjene. Analizirana su četiri modula:

1. Utvrđivanje osjetljivosti projekta na klimatske promjene
2. Procjena izloženosti opasnostima koje su vezane za klimatske uvjete
3. Procjena ranjivosti
4. Procjena rizika

Inače se koristi sedam modula (Utvrđivanje mogućnosti prilagodbe, Procjena mogućnosti prilagodbe i Integracija akcijskog plana prilagodbe u ciklus razvoja projekta) osim ako se kroz prva četiri utvrdi da ne postoji značajni rizik ili ranjivost predmetnog zahvata na klimatske promjene, kao što je i slučaj u ovom predmetnom zahvatu.

Modul 1. – Utvrđivanje osjetljivosti zahvata na klimatske promjene

Osjetljivost projekta utvrđuje se u odnosu na klimatske varijable i sekundarnih efekata ili opasnosti koje su vezane uz klimatske uvjete. Osjetljivost zahvata procjenjuje se kroz četiri glavne komponente:

- Postrojenja i procesi IN – SITU (konstrukcija sa solarnim panelima)
- Ulaz (sunčeva energija)
- Izlaz (električna energija)
- Transport (prometna povezanost)

Osjetljivost na klimatske promjene

<table>
<thead>
<tr>
<th>2</th>
<th>Visoka</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Umjerena</td>
</tr>
<tr>
<td>0</td>
<td>Zanemariva</td>
</tr>
<tr>
<td>Osjetljivost</td>
<td>Primarni utjecaji</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Promjene prosječnih temperatura</td>
<td>1</td>
</tr>
<tr>
<td>Povećanje ekstremnih temperatura</td>
<td>2</td>
</tr>
<tr>
<td>Promjene prosječnih oborina</td>
<td>3</td>
</tr>
<tr>
<td>Povećanje ekstremnih oborina</td>
<td>4</td>
</tr>
<tr>
<td>Promjene prosječne brzine vjetra</td>
<td>5</td>
</tr>
<tr>
<td>Povećanje maksimalnih brzina vjetra</td>
<td>6</td>
</tr>
<tr>
<td>Vlažnost</td>
<td>7</td>
</tr>
<tr>
<td>Sunčeva zračenja</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Suša</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>19</td>
</tr>
</tbody>
</table>
Elaborat zaštite okoliša za ocjenu potrebi procjene utjecaja zahvata na okoliš

Modul 2. Procjena izloženosti opasnostima koje su vezane za klimatske uvjete

Nakon što se utvrdi osjetljivost zahvata, procjenjuje se izloženost istog na opasnosti koje su vezane za klimatske uvjetе na lokaciji.

Procjena izloženosti zahvata na klimatske promjene obrađuje se za postojeće i buduće stanje na predmetnoj lokaciji i to za klimatske varijable i vezane opasnosti kod kojih postoji visoka ili srednja osjetljivost.

Vrednuje se ocjenama:

<table>
<thead>
<tr>
<th>Izloženost klimatskim promjenama</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visoka</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Umjerena</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zanemariva</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Modul 3. Procjena ranjivosti

Ako se smatra da postoji visoka ili srednja osjetljivost zahvata na određenu klimatsku varijablu ili opasnost, lokacija i podaci o izloženosti zahvata računaju se u procjeni ranjivosti zahvata na klimatske promjene, na način:

\[V = S \times E \]

Gdje je S – osjetljivost zahvata na klimatske promjene, a E – izloženost zahvata na klimatske promjene.

Razina ranjivosti projekta

<table>
<thead>
<tr>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visoka</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Umjerena</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zanemariva</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul 4. Procjena rizika

Na temelju procjene ranjivosti zahvata izrađuje se procjena rizika predmetnog zahvata na klimatske promjene. Faktori rizika određuju se tablicom u nastavku:

<table>
<thead>
<tr>
<th>Ranjivost</th>
<th>PP, U/I</th>
<th>Požari</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivo ranjivosti</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ušteda</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Izlaz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postrojenja i procesi IN-SITU</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Opis</th>
<th>Ranjivost</th>
<th>PP, U/I</th>
<th>Požari</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prema kari rizika i ranjivosti od požara predmetna lokacija nalazi se u mediteranskom području koje ima visoki rizik od šumskih požara u obalnim područjima i na otocima tijekom ljetnih mjeseci i u sušnim razdobljima.</td>
<td>Nivo ranjivosti</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oštećenje konstrukcije ili elektroopreme elektrane</td>
<td>Ušteda</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Povećanje ekstremnih temperatura</td>
<td>Izlaz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suše</td>
<td>Transport</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vrlo vjerojatno</td>
<td>Postrojenja i procesi IN-SITU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 od 25</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mjere smanjenja rizika	Konstantno usavršavanje učinkovitosti mehanizma pripravnosti i pravodobne obrane.	
Primjenjene mjere	Sprovedene odgovarajuće procjene rizika, pravodobna obrana i pripremljen učinkoviti mehanizam pripravnosti.	
Potrebne mjere	Nisu predviđene	

Zaključak

Procjena utjecaja klimatskih promjena na zahvat ocjenjivanja je prema klimatskim modulima u procesu jačanja otpornosti na klimatske promjene iz Smjernica za voditelje projekata: Kako povećati otpornost ranjivih ulaganja na klimatske promjene.

Analizirana su četiri modula od sedam mogućih. Utvrđivanje osjetljivosti zahvata na klimatske promjene, procjena izloženosti opasnostima koje su vezane uz klimatske uvjete, procjena ranjivosti zahvata i procjena rizika.

Navedeni parametri za koje je procijenjena umjerena i visoka osjetljivost na klimatske promjene (promjena prosječnih oborina, povećanje ekstremnih oborina, sunčevo zračenje, požari i klimatske nepogode) obrađeni su u drugom modulu kroz procjenu izloženosti opasnostima koje su vezane uz klimatske uvjete. Ako se smatra da postoji visoka ili srednja osjetljivost zahvata na određenu klimatsku varijablu ili opasnost, lokacija i podaci o izloženosti zahvata računaju se u procjeni ranjivosti zahvata na klimatske promjene. Na temelju procjene ranjivosti zahvata izrađuje se procjena rizika predmetnog zahvata na klimatske promjene. Procjena rizika napravljena je za one aspekte kojima je analizom ranjivosti utvrđena visoka ranjivost. U ovom predmetnom zahvatu to su požari.

Prema karti rizika i ranjivosti od požara predmetna lokacija nalazi se u mediteranskom području koje ima visoki rizik od šumskih požara u obalnim područjima i na otocima tijekom ljetnih mjeseci i u sušnim razdobljima. Prema dobivenim izračunima iz navedenih modula, rizik od pojavljanja požara na predmetnoj lokaciji je vrlo vjerojatan dok su posljedice male. Mjerama smanjenja rizika kroz konstantno usavršavanje učinkovitosti mehanizma pripravnosti i pravodobne obrane od požara moguće posljedice od požara svesti će se na minimum. S obzirom na sprovedene odgovarajuće procjene rizika te pravodobnost pripreme i obrane, posljedice takvih događaja su male, stoga navedene klimatske promjene na planirani zahvat neće utjecati u značajnoj mjeri.

4.1.4. Utjecaji na vode

Utjecaji tijekom građenja

Prema projektu lokacija za smještaj sunčane elektrane ne nalazi se u blizini površinskih i priobalnih vodnih tijela, kao niti u bujičnom i poplavnom području (vidi sliku 3.3. - 10).

Udaljenost lokacije sunčane elektrane od najbližeg površinskog vodnog tijela JOLN001 Vransko jezero je cca 3 km, a najbližeg priobalnog vodnog tijela Kvarner-KVA je cca 1 km. Stoga se utjecaj tijekom gradnje elektrane na stanje površinskog i priobalnog vodnog tijela ne očekuje.

Tijekom građenja na prostoru gradilišta može doći do izlijevanja motornog ulja, goriva, različitih otapala, boje i slično, što za posljedicu može imati njihovu infiltraciju u tlo i podzemlje. Ovakve utjecaje ne očekujemo u uvjetima normalnog funkcioniranja i pravilnog vođenja čistaca gradišta, a vezano samo kao akcidentne situacije pa stoga ovakvu vrstu utjecaja smatramo malo vjerojatnom i malo značajnom. Ako do njih i dođe oni se svode na najmanju moguću i prihvatljivu razinu uz primjenu odgovarajućih mjera, korištenjem upijajućih materijala za sprečavanje širenja onečišćenja i spremnika za odlaganje iskopane onečišćene zemlje, odnosno pravilnom organizacijom građenja te se veće posljedicu ovakvih događaja i utjecaj na stanje tijela podzemne vode JOGN_13 – Jadranški otoci Cres ne očekuje.
Utjecaji tijekom korištenja

Pri radu sunčane elektrane ne nastaju tehnološke otpadne vode niti se predviđa korištenje vode osim za potrebe protupožarne zaštite. Projektom je predviđen spremnik za vodu protupožarne namjene zapreminu 12m³.

Interne prometne površine unutar prostora sunčane elektrane izvode se kao tucanički zastor bez asfalta. Prometnice prate geometrijske karakteristike terena te se nalaze u padu potrebnom za odvodnju oborinskih voda u okolini terena. One služe za osiguranje pristupa za oborinskim vozilima te vozilima koja će povremeno dolaziti na prostor elektrane u svrhu dostave opreme, redovitog nadgledanja njezinog rada i održavanja. S obzirom na to da održavanje elektrane obuhvaća mjesečni odlazak na lokaciju, prisutnost vozila će biti rijetka te onečišćenja oborinske vode s prometnice neće biti. Prema projektu one se pročišćuju kroz šljunak završne obrade u temeljno tlo te se filtriraju. Oborinske vode s krovova zgrada transformatora i solarnih panela smatraju se čiste, te se ispuštaju neposredno s krovnih ploha u okolini terena.

Kako je u sklopu postrojenja predviđen rad pet transformatorskih stanica ispod svake je predviđena izgradnja uljne kade (tankvane) za prihvat ulja iz transformatora u slučaju incidentnog izlijevanja. Temeljna ploča transformatora i uljna kada su vodonepropusni kako bi se spriječila da eventualno ulje dospije u okoliš.

Rizika od poplava na području zahvata nema.

Prema svemu navedenom zaključuje se da utjecaja na stanje površinskog vodnog tijela JOLN001 Vransko jezero, podzemnog vodnog tijela JOGN_13 – Jadranski otočci Cres te na priobalna vodna tijela Sjeverni dio Kvarnerića 0423-KVS i Kvarner-KVA tijekom korištenja sunčane elektrane neće biti.

4.1.5. Utjecaji na tlo

Utjecaj tijekom građenja

Utjecaj na kvalitetu tla tijekom građenja bit će privremen i lokaliziran na prostor izgradnje sunčane elektrane.

Tijekom izvođenja pripremnih i zemljišnih radova kao što su formiranje pristupnih puteva, kopanje temelja nosive konstrukcije solarnih panela, kopanje rova za polaganje podzemnih niskonaponskih kabela i zatrpavanje nakon polaganja te prilikom kretanja radnika i mehanizacije po manipulativnim površinama, doći će do privremene degradacije tla. Po završetku radova smanjuje se manipulativne površine bit će sanirane i uređene, čime će ovaj utjecaj biti sveden na minimum.

Utjecaj na tlo tijekom zemljanih, betonskih i montažnih radova moguć je uslijed akcidenata (istjecanje goriva, strojnog ulja, različitih otapala i sl.). Ovakve utjecaje ne očekujemo u uvjetima normalnog funkcioniranja i pravilnog vođenja radnika i mehanizacije po manipulativnim površinama, doći će do privremene degradacije tla. Po završetku radova se smanjuje manipulativne površine bit će sanirane i uređene, čime će ovaj utjecaj biti sveden na minimum.

Također utjecaj na tlo moguć je tijekom zemljišnih radova uslijed odlaganja viška iskopa na okolno zemljište koje nije za to određeno, prosipanje građevnog materijala s vozila na kolnike i ostale manipulativne plohe te neprimjereni sanitarni uvjeti za radnike/nepostojanje kemijskih WC-a i sl. Međutim, pravilnom organizacijom građenja te nisu značajni.

Izgradnja sunčane elektrane Orlec Trinket - zapad
mehanizacije, odlaganjem viška materijala iz iskopa na deponiju odobrnu od nadležnih tijela, nastanak navedenih utjecaja se ne očekuje.

Utjecaj tijekom korištenja

Na prostoru za izgradnju sunčane elektrane kao građevine od Županijskog interesa doći će do trajne prenamjene tla na površini od cca 17,9 ha od čega površina obuhvata namijenjenog za smještaj solarnih panela i platoa trafostanice iznosi 15,7 ha. Kako se ne radi o vrijednom tlu i poljoprivrednoj površini utjecaj prenamjene tla se ne smatra značajnim.

Utjecaj na tlo tijekom korištenja elektrane moguć je uslijed incidentnog izlijevanja ulja iz transformatora. Međutim, kako bi se spriječilo da eventualno procijelo ulje dospije u okoliš ispod svake transformatorske stanica projektom je predviđena izgradnja vodonepropusne uljne kade (tankvane). Ulje će se zbrinuti i odvesti na zakonom propisan način, putem ovlaštene osobe te onečišćenja tla neće biti.

Drugi utjecaji na tlo tijekom rada sunčane elektrane se ne očekuju. Pri radu fotonaponskih ploča ne proizvode se štetni plinovi niti nastaju tehnološke otpadne vode.

4.1.6. Utjecaji na bioraznolikost

Utjecaji na floru i staništa

Utjecaji tijekom građenja

Priprema terena zahtjeva uklanjanje vegetacije, prvenstveno one grmolike kako bi se očistio teren za postavljanje temelja za buduću konstrukciju koji nosi solarne panele. Predviđeni obuhvat zahvata obuhvaća površinu od 15,7 ha gdje će većim dijelom doći do uklanjanja sadašnjeg tipa vegetacije (sukcesijski stadij pod šmrikom). Time će ovaj sukcesijski stanišni tip biti pod izravnim negativnim utjecajem, ali se otvara prostor održavanju važnijeg staništa - *Istočno submediteranski suhi travnjaci*. Na mjestima postavljanja potrebnih elemenata solarne elektrane uklonit će se trajno postojeća, grmolika vegetacija, a u ostalim dijelovima obuhvata zahvata će se zadržati ako ne stvara sjenu na panelima tijekom dana.

Vrlo mali dio površine se mora iskopati za temeljenje stupova konstrukcije, a kad se uzmu u obzir svi objekti (površine solarnih panela i drugih objekata) oni zauzimaju površinu od 2,4 ha, što je oko 15% površine obuhvata zahvata. Većina te površine zapravo ne predstavlja trajni gubitak kamenjarskog suhog travnjaka jer će se vegetacija obnoviti i uz modificirani sastav vrsta raste i u hladu panela. Moramo uzeti u obzir da prividnim kretanjem sunca po nebu tijekom dana, sunčevi zrake mogu doprijeti ispod panela nakon izlaska i prije zalaska sunca. Unatoč tome, možemo navesti da pod objektima i panelima završava 0,0165 % površine ovog stanišnog tipa u odnosu na ukupno 14.500 ha ukupne površine u području ekološke mreže Otok Cres, gdje je pak procijenjen na 2-15% ukupne površine ovog stanišnog tipa na razini Hrvatske).
Uklanjanje postojeće grmolike vegetacije na području zahvata može pozitivno utjecati na povratak izvornih krških pašnjaka. S obzirom da je za prirodno održavanje ovog tipa pašnjaka neophodna ispaša ovcama, te uzimajući u obzir da je ovacma potreban zaklon i sjena za vrijeme ispaše koje fotonaponski moduli mogu pružiti, izgradnja SE može pozitivno djelovati na povratak ugroženog prirodnog stanišnog tipa. U širem kontekstu ukupnu zastupljenost stanišnog tipa *Istočno submediteranski suhi travnjaci* na području cijele ekološke mreže „Otok Cres” HR2001358, možemo zaključiti da većih negativnih utjecaja za cjelovitost očuvanja ovog stanišnog tipa neće biti.

Terenskim uvidom tijekom izrade Glavne ocjene prihvatljivosti zahvata SE Orlec Trinket – istok za ekološku mrežu utvrđena je ciljna vrsta održavanja ekološke mreže - jadranska kozonoška (*Himantoglossum adriaticum*). Ova i druge strogo zaštićene biljne vrste mogu stradati ako jedinke najvažnijih biljaka kako bi ih radnici i vozila u što većoj mjeri mogli zaobići odnosno izbjeći direktno uništenje u vegetativnoj fazi, a osobito u generativnoj fazi. Tijekom izgradnje očekuje se i povećana emisija čestica prašine u zraku koja bi mogla imati negativan utjecaj na biljke na lokaciji zahvata, dok im vjetar i kiša ne očiste listove, nakon čega govorimo o zanemarivom utjecaju.

Područje izgradnje zahvata potencijalno je ugroženo zagađenjem uslijed oštećenja mehanizacije (ispuštanje maziva, ulja i goriva), nepropisnog odlaganja opasnih tvari, ostataka građevinskih sirovina i materijala. Akcidentne situacije moguće su u slučaju nepridržavanja odgovarajućih postupaka tijekom manipulacije onečišćujućim i štetnim sredstvima koja se koriste pri gradnji, a mogu se proljevanjem infiltrirati u tlo i podzemlje. Rizik od onečišćenja se može značajno smanjiti korištenjem ispravne mehanizacije i radnih strojeva, pridržavanjem propisanih mjera i standarda za građevinsku mehanizaciju te izvođenjem radova prema projektnoj dokumentaciji uz provođenje mjera zaštite okoliša.

Uslijed izvođenja radova na svim predviđenim lokacijama moguće je izbijanje požara koje može imati izrazito negativne utjecaje na cjelokupno područje jer se zahvat izvodi u klimazonalnom području gdje je mogućnost od pojave požara velika i izrazito opasna. Izvođenje radova u skladu sa strukom i projektom (uz izrađen Projekt zaštite od požara u Glavnom projektu zahvata) ne bi trebalo dovesti do požara.

Utjecaj tijekom korištenja

Za vrijeme rada SE Orlec Trinket - zapad doći će do zanemarivog trajnog gubitka (temeljenje objekata) stanišnog tipa *Istočno submediteranski suhi travnjaci*, uključujući površine već obrasle šmrikom i dračikom. Pod djelomičnim hladam panela naći će se oko 2 ha površine travnjaka koji se mogu prirodno izmijeniti sastavom vrsta, ali neće biti trajno izgubljeni. Predviđenim rasporedom modula doći će do zauzimanja relativno velike površine, čime će doći do ometanja prirodnog osvjetljenja i drenaže oborinskih voda te promjena stanišnih prilika na lokaciji.

No uzimajući u obzir da na predviđenoj lokaciji dominira degradirana šumska vegetacija te da je postotak nezasjenjenih područja za travnjačke zeljaste biljke već malen, negativni utjecaj na floru travnjaka u vidu zasjenjenja površine panelom manji je od efekta zasjenjenja koje trenutno vrše grmovi šmrike. Tako će uspostava izvorne travnjačke vegetacije biti omogućena ispod samih fotonaponskih modula, za čije održavanje će biti omogućeno održavanje suhih mediteranskih travnjaka.

Izgradnja sunčane elektrane Orlec Trinket - zapad
Dakle, promjena stanišnih uvjeta, može s obzirom na trenutni sukcesivni stadij, potencijalno imati pozitivan učinak na povećanje bioraznolikosti, ukoliko dođe do obnove izvornih krških pašnjaka.

Tijekom korištenja SE, ne očekuju se nikakve akcidentne situacije zbog inertnosti ovog tipa energane. Vjerojatnost prirodnog požara tijekom korištenja je mala, s obzirom da će SE biti opremljena sustavom zaštite od udara munje.

Utjecaj na faunu

Utjecaji tijekom građenja

Usljed rada mehanizacije kao i njenih posljedica (buka, vibracije) moguće je privremeno povećanje fragmentacijskog efekta, no on neće biti značajniji s obzirom na kратak vremenski period trajanja radova.

Narušavanje mira u staništu rezultat je prisustva ljudi te buke i vibracija uzrokovanih radnim strojevima i opremom tijekom izgradnje zahvata. Intenzitet utjecaja na životinjski svijet u okolici zahvata koje stvara prisustvo ljudi, vozila i strojeva ovisi o broju ljudi, broju i tipu strojeva i opreme uključenih u pripreme i izvedbene radove. U ovoj situaciji se s obzirom na kратak period trajanja radova ne očekuje negativni utjecaj na već postojanje staništa.

Povećano prometovanje transportnih vozila (doprema i otprema materijala i radnika) i mehanizacije uzrokovat će emisije štetnih plinova, no trajanje emisija neće biti značajno. U blizini zahvata već postoji asfaltna baza, napušteno odlagalište građevinskog materijala i državna cesta, što ukazuje na postojanje adekvatne infrastrukture za održavanje staništa.

Uklanjanje vegetacije predstavlja značajnu izmjenu staništa, za mnoge vrste ptica i gmazova je upravo takva mjera poželjna za obnovu i restauraciju staništa. Buka emitirana tijekom ovog zahvata će biti kratkotrajna te će se proizvoditi isključivo tijekom izgradnje SE.

Utjecaj tijekom korištenja

Predviđena površina SE od 15,7 ha izravno će utjecati na gubitak dijela staništa životinjskih vrsta, osobito zbog ograđivanja kompleksa SE. Idejnim rješenjem je predviđeno izgradnju blokova između panela, a ne cijelog obuhvata SE, uz ostavljanje prostora između ograđenih blokova. Propisana mjera za održavanje se efekt fragmentacijski može značajno ublažiti. Gledajući vrste ciljeva očuvanja ekološke mreže HR2001358 Otok Cres, vidljivo je da je većina vrsta veoma mobilna te područje SE neće značajnije utjecati na njihov areal rasprostranjenosti.

Za vrijeme rada SE Orlec Trinket – zapad na području obuhvata zahvata doći će do djelomične devastacije 2,4 hektara suhih mediteranskih travnjaka sporadično obraslih grmovitom vegetacijom, dracićom i šmrikačom. Promjena vegetacijske strukture u budućnosti, iz grmovitog oblika prema travnjakom obliku vegetacije kroz održavanje travnjaka, a zatim održavanje zahvata između panela će djelovati pozitivno za većinu kopnenih ciljanih vrsta očuvanja, a prvenstveno za sami travnjak kao ciljno stanište očuvanja.
Utjecaj zauzimanja staništa značajno će biti ublažen činjenicom da će solarni paneli biti postavljeni na stalcima (konstrukciji), tako da tlo ispod ostaje slobodno za kretanje životinja, a kao zakloni od oborina, paneli mogu biti atraktivni nekim vrstama ptica za gnježđenje na tlu ispod panela.

Potencijalno nenamjerno uznemiravanje lokalne faune je moguće samo tijekom redovitog održavanja sustava SE, no ono će biti kratkotrajno, te privremenog karaktera. Sama solarna elektrana s obzirom na karakteristike rada nije izvor buke, vibracija niti emisija bilo kakvih tvari te se zbog toga ne očekuje negativni utjecaj na faunu.

4.1.7. Utjecaji na krajobrazne vrijednosti

Utjecaji tijekom građenja

Tijekom izvođenja građevinskih radova na lokaciji zahvata formirat će se gradilište. Javit će se vremenski ograničeni negativni vizualni utjecaj na kvalitetu krajobraza zbog prisutnosti radnih strojeva, opreme i materijala potrebnog za gradnju. Negativni utjecaj bit će privremenog karaktera i bez trajnih posljedica na krajobraznu sliku promatranog prostora te se ocjenjuje kao zanemariv.

Utjecaji tijekom korištenja

Lokacija predmetnog zahvata smještena je u neposrednoj blizini državne ceste D100 Porozina – Cres – Mali Lošinj te se nalazi uz lokalnu cestu LC58093 Valun – D100. S obzirom na već postojeći antropogeni utjecaj (prometnice, kamenolom uz cestu) zahvat neće uzrokovati značajniju degradaciju u prostoru. Sunčana elektrana ističe se horizontalnim zauzimanjem površine bez vertikalnih isticanja pojedinih objekata, a s prometnice se ne vidi zbog grmolikog raslinja u zoni vegetacije između ceste i zahvata. Zbog toga svojom pojavom ne dominira u prostoru. Kako je projektom zadržana prirodna konfiguracija terena negativni utjecaj dodat no će se ublažiti projektom krajobraznog uređenja predviđenim prostorno – planskom dokumentacijom. S obzirom na sve navedeno utjecaj na krajobraz se smatra prihvatljivim.

4.1.8. Utjecaji na kulturno - povijesnu baštinu

Tijekom građenja i korištenja

S obzirom da zahvat nema utjecaja na šire područje u smislu mogućnosti stvaranja fizičkih oštećenja na objektima, promatran radičije za kulturno-povijesnu baštinu je uzeto kao zona 500 m oko granica obuhvata zahvata. U toj zoni nisu evidentirana kulturno-povijesna dobra ili arheološka nalazišta. S obzirom na to da se lokacija predmetnog zahvata, prema prostorno – planskoj
dokumentaciji nalazi izvan povijesnih graditeljskih cjelina, memorijalne i etnološke baštine te je udaljena od povijesnih građevina, arheoloških područja i lokaliteta, smatra se da utjecaja na kulturno – povijesnu baštinu tijekom građenja i rada elektrane nema.

4.1.9. Utjecaji na gospodarstvo

Tijekom građenja i korištenja

Tijekom izgradnje i rada sunčane elektrane neće biti negativnog utjecaja na gospodarstvo otoka Cresa. Republika Hrvatska ima vrlo dobre prirodne mogućnosti za iskorištavanje obnovljivih izvora energije. Naročito prostori visoke vrijednosti ozračenosti od sunca kao što je i slučaj ove predmetne lokacije. Možemo reći da su obnovljivi izvori energije, "domaći" izvori energije i da je njihova uporaba sredstvo poboljšanja sigurnosti opskrbe energijom te poticaj razvoju domaće proizvodnje energetskih opreme i usluga.

Jedini resurs kojeg zahvat treba ukloniti je makija i dračik, u kojem dominira šmrika na nekadašnjim suhim travnjacima. Prostor je pod upravom Hrvatskih šuma – zahvat se nalazi na području GJ Vrana (687) pod šumarijom Cres – Lošinj i Upravom šuma podružnice Buzet. U ovoj gospodarskoj jedinici prevladava kultura crnog bora i alepskog bora koje su nastale pošumljavanjem. Od autohtonih šumskih zajednica dolazi crnika s crnim jasenom, crnika s crnim grabom i zajednica meduna i bjelograbića.

4.2. Opterećenje okoliša

4.2.1. Buka

Utjecaj tijekom građenja

Tijekom ograničenog vremenskog razdoblja, u okolišu lokacije zahvata će se javljati buka kao posljedica aktivnosti izgradnje sunčane elektrane. Procijenjeno ukupno vrijeme trajanja izgradnje iznosi tri mjeseca.

Do emisija buke u okolini prostora dolazit će od rada strojeva i vozila na gradilištu, prilikom iskopa, utovara i odvoženja/dovoženja materijala potrebnih za građevinske zahvate te ostalih radova na gradilištu, u periodu radnog vremena gradilišta.

Radovi na gradilištu su predviđeni isključivo tijekom dnevnog razdoblja (od 7 do 23 sati, članak 5. Zakona o zaštiti od buke). Rad noću se ne očekuje.

Iskustva s gradilišta upućuju da se na gradilištu može očekivati buka od oko 90 dBA u neposrednoj blizini izvora, tj. na udaljenosti od cca. 3 m od građevinskog stroja.

Razina buke mijenjat će u ovisnosti o intenzitetu radova, stanju i održavanju mehanizacije, pridržavanju discipline u pogledu izvođenja radova i načina izvođenja radova, masi i opterećenju vozila, karakteristikama ceste kojom se stroj ili vozilo kreće i drugim izvorima buke.
Kako se razina buke smanjuje porastom udaljenosti od izvora, a u blizini lokacije gradilišta nema stambenih objekata (naj bliže naselje Orlec je udaljeno cca 2 km) ne očekuje se uznemiravanje stanovništva bukom kao posljedica aktivnosti izgradnje sunčane elektrane. Buka će pritom najviše utjecati na životinjski svijet koji obitava u blizini lokacije zahvata.

Međutim, utjecaj je privremen i ograničenog vremenskog trajanja, vezan uz radni proces i radno vrijeme gradilišta pa kao takav ne predstavlja značajan negativan utjecaj.

Utjecaj tijekom korištenja

Postojeći izvor buke na lokaciji su cestovni promet državnom i lokalnom cestom i glasanje životinja.

Buka u vanjskom prostoru oko elektrane javljat će se tijekom kretanja vozila koja će povremeno dolaziti na prostor elektrane u svrhu dostave opreme, redovitog nadgledanja njezinog rada i održavanja, međutim njihov utjecaj na buku okolnog područja je povremen i nije značajan. Mala razina buke će biti prisutna i zbog rada transformatorske stanice, no ona će biti u granicama propisanih vrijednosti Pravilnika o najvišim dopuštenim razinama buke u kojoj ljudi rade i borave (NN 145/14). Ostali elementi sunčane elektrane ne proizvode buku.

Prema navedenom, utjecaji tijekom rada elektrane na buku okolnog područja su mali i lokalni te nisu značajni. Zanemariva razina buke u neposrednoj blizini predmetnog rada i izgradnje sunčane elektrane „Orlec Trinket – ISTOK“. Međutim, kako osim državne ceste D100 Porozina – Cres – Mali Lošinj te lokalne ceste LC58093 Valun–D100, koje su dominantni izvor buke, u bližoj okolici nema sadržaja koji emitiraju buku veće jakosti, radom predmetnih elektrana ne očekuje se promjena razina buke u odnosu na prijašnje stanje niti prekoračenje dozvoljenih razina buke propisanih Pravilnikom o najvišim dopuštenim razinama buke u sredini u kojoj ljudi rade i borave (NN 145/04).

4.2.2. **Otpad**

Utjecaj tijekom građenja

Tijekom izvođenja radova na izgradnji sunčane elektrane nastat će određene količine i vrste otpada.

U fazi izgradnje nastat će manja količina komunalnog otpada (ostaci od konzumacije hrane i pića radnika).

Očekuje se nastanak građevinskog otpada, od iskopane zemlje i kamenja prilikom pripremnih i zemljanih radova (formiranje pristupnih putova, kopanje temelja nosive konstrukcije solarnih panela, kopanje rova za polaganje podzemnih niskonaponskih kabela i zatrpavanje nakon polaganja i dr.), viška betona nakon dovršetka betoniranja temelja čelične konstrukcije koja nosi solarne panele i transformatora, ostataka oplate i dijelova dasaka, željeza, čelika i miješanih metala.

Nastajat će i manja količina ambalažnog otpada (npr. vreće, ostaci paleta, kutije, plastične folije i sl.) od proizvoda upotrijebljenih na gradilištu tijekom montaže elektroopreme.

Za očekivati je manje količine opasnog otpada. To se uglavnom odnosi na otpad koji potječe od boja i razrjeđivača, uprljanih tkanina te iskorištene ambalaže.

Prema Pravilniku o katalogu otpada (NN 90/15), tijekom radova na izgradnji planiranog zahvata, predviđa se nastanak vrsta otpada koje se mogu svrstati pod sljedeće grupe, podgrupe i ključne brojeve (vidi tablicu 4.1-1.).
Tablica 4.1–1.: Ključni brojevi i nazivi otpada tijekom izgradnje sunčane elektrane.

<table>
<thead>
<tr>
<th>KLJUČNI BROJ</th>
<th>NAZIV OTPADA</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Komunalni otpad (otpad iz domaćinstava i slični otpad iz obrta, industrije i ustanova) uključujući odvojeno skupljene sastojke</td>
</tr>
<tr>
<td>20 03 01</td>
<td>Miješani komunalni otpad</td>
</tr>
<tr>
<td>17</td>
<td>Građevinski otpad i otpad od rušenja objekta (uključujući iskopanu zemlju s onečišćenih lokacija)</td>
</tr>
<tr>
<td>17 01</td>
<td>Beton, opeka, crijev/pločice i keramika</td>
</tr>
<tr>
<td>17 02</td>
<td>Drvo, staklo i plastika</td>
</tr>
<tr>
<td>17 04</td>
<td>Metali</td>
</tr>
<tr>
<td>17 05</td>
<td>Zemlja (uključujući iskopanu zemlju s onečišćenih lokacija), kamenje i otpad od jaružanja</td>
</tr>
<tr>
<td>15</td>
<td>Otpadna ambalaža, apsorbensi, tkanine i sredstva za brisanje i upijanje, filtarski materijali i zaštitna odjeća koja nije specificirana na drugi način</td>
</tr>
<tr>
<td>15 01</td>
<td>Ambalaža (uključujući odvojeno skupljenu ambalažu iz komunalnog otpada</td>
</tr>
<tr>
<td>13</td>
<td>Otpadna ulja i otpad od tekućih goriva (osim jestivih ulja i ulja iz poglavlja 05, 12 i 19)</td>
</tr>
<tr>
<td>13 01</td>
<td>Otpadna hidraulička ulja</td>
</tr>
<tr>
<td>13 02</td>
<td>Otpadna razina ulja za motore i zupčanike</td>
</tr>
<tr>
<td>13 08</td>
<td>Zauljeni otpad koji nije specificiran na drugi način</td>
</tr>
</tbody>
</table>

Otpad nastao tijekom građenja sunčane elektrane će se sakupljati i odvajati po vrstama otpada te predavati ovlaštenim tvrtkama (sakupljačima) na zbrinjavanje, a sve sukladno odredbama Zakona o održivom gospodarenju otpadom (NN broj 94/13, 73/17.), Pravilnika o gospodarenju otpadnom električnom i elektroničkom opremom (Narodne novine, br. 42/14, 48/14, 107/14, 139/14) te Zakona o građenju (NN 153/13, 20/17). Stoga se negativan utjecaj uslijed nastanka i zbrinjavanja otpada tijekom izgradnje elektrane ne očekuje.

Utjecaj tijekom korištenja

Prilikom tehnološkog procesa pretvaranja energije sunca u električnu energiju ne nastaje otpad, osim tijekom održavanja sunčane elektrane koje uključuje periodičke vizualne pregledove, čišćenje solarnih panela te zamjenu opreme ili njezinih dijelova. Vijek trajanja sunčane elektrane, fotonaponskih modula s pratećom opremom je do 30 godina. Zamjenom njene opreme nastaje otpad koji ovisno o vrsti treba zbrinuti sukladno zakonskim propisima. Fotonaponski moduli sadrže materijale koji se mogu reciklirati i ponovo koristiti u novim proizvodima, kao što su staklo, aluminij i poluvodički materijali.

Tijekom korištenja sunčane elektrane, održavanje tehničkih dijelova provodit će se u skladu s uputama proizvođača opreme tijekom kojeg će nastajati otpad grupe: 13 OTPADNA ULJA I OTPAD OD TEKUĆIH GORIVA (osim jestivih ulja i ulja iz poglavlja 05, 12 i 19). Kako je u sklopu postrojenja predviđen rad pet transformatorskih stanica ispod svake je predviđena izgradnja uljne kade (tankvane) za prihvat ulja iz transformatora u slučaju incidentnog izlijevanja. Uljna kada je vodonepropusna kako bi se spriječilo da eventualno procijenjeno ulje dospije u okoliš.

Zbrinjavanje otpada obavljat će se putem ovlaštenih pravnih osoba za zbrinjavanje pojedinih vrsta otpada, a sve sukladno odredbama Zakona o održivom gospodarenju otpadom (NN 94/13, 73/17). Stoga se negativan utjecaj uslijed nastanka i zbrinjavanja otpada tijekom korištenja sunčane elektrane ne očekuje.
4.2.3. Promet

Utjecaj tijekom građenja

Tijekom gradnje sunčane elektrane neće biti negativnog utjecaja na promet. Glavni kolni pristup s javne prometne površine je s lokalne ceste koja se sjeverozapadno spaja na glavnu državnu prometnicu. Također plan je izvoditi interne prometne površine kao makadamski kolnik sa zajedničkim spojem na postojeću lokalnu cestu. Zbog navedenog, promet glavnom državnom cestom D100 Porozina – Cres odvijat će se bez ometanja prometne protočnosti.

Utjecaj tijekom korištenja

Tijekom rada sunčane elektrane negativni utjecaj na promet i prometne tokove se ne očekuje.

4.2.4. Svjetlosno onečišćenje

Utjecaj tijekom građenja i korištenja

Svjetlosno onečišćenje analizirano je prema GIS portalu www.lightpollutionmap.info gdje je razina onečišćenja prikazana radijancom (engl. Radiance) tj. intenzitetom elektromagnetskog zračenja po jedinici površine.

U Hrvatskoj je najviše svjetlosnog onečišćenja koncentrirano kod većih urbanih središta kao što su Zagreb i okolica, Rijeka, Split i Osijek, ali i uz ostale veće gradove.

Lokacija predmetnog zahvata nalazi se u zoni gdje svjetlosno onečišćenje nije zabilježeno (Slika 4.2-1.), osim u području većih naselja na Otoku.
4.3. **Vjerojatnost značajnih prekograničnih utjecaja**

S obzirom na osnovne karakteristike i prostorni obuhvat ovog predmetnog zahvata ne očekuju se nikakvi prekogranični utjecaji.

4.4. **Sažeti opis mogućih značajnih utjecaja zahvata na zaštićena područja**

Predmetni zahvat smješten je izvan granica zaštićenih područja prirode temeljem Zakona o zaštiti prirode (NN 80/13, 15/18).

Najbliže zaštićeno područje je posebni rezervat Mali bok - Koromačna nalazi se na udaljenosti od oko 3,5 km jugoistočno od lokacije predmetnog zahvata.

Područje je značajno za očuvanje bjeloglavog supa. Procjenjuje se da izgradnja i korištenje SE Orlec Trinket – zapad, zajedno sa SE Orlec Trinket – istok neće imati značajni negativni utjecaj na zaštićeno područje jer zahvat svojim karakteristikama i namjenom te uz predložene (ovaj elaborat) i već propisane mjere zaštite ptica (Rješenje po Glavnoj ocjeni za SE Orlec Trinket – istok) ne predstavlja opasnost za 3,5 km udaljeno zaštićeno područje. Neki egzaktni utjecaj sunčanih elektrana na

Slika 4.2-1. Svjetlosno onečišćenje na širem području zahvata, izvor: www.lightpollutionmap.info
4.5. Sažeti opis mogućih značajnih utjecaja zahvata na ekološku mrežu

Lokacija zahvata nalazi se unutar područja očuvanja značajnih za vrste i stanišne tipove: Otok Cres (HR2001358) te u području očuvanja značajnom za ptice: Kvarnerski otoci (HR1000033).

Uvidom u ciljne vrste očuvanja ovih područja, vidimo da se radi o beskralješnjacima, gmazovima, pticama, sisavcima, stanišnim tipovima i jednoj vrsti biljke. Sve ove raznolike skupine zajedno s ostalom florom i faunom područja uzete su u obzir u opisu utjecaja na floru i staništa te utjecaja na faunu u poglavlju *Utjecaji na birozaljivost* u ovom elaboratu. Svi opisani utjecaji odnose se i na ciljne vrste očuvanja, a kod prijedloga mjera zaštite uzeta je u obzir procjena utjecaja na ciljeve očuvanja i staništa životinja ideje o očuvanju ekološke mreže iz studije Glavne ocjene prihvatljivosti zahvata za ekološku mrežu iz 2016. godine za istočnu sunčanu elektranu „SE Orlec Trinket – istok“.

Također, predložene mjere zaštite istovjetne onima u Rješenju o prihvatljivosti „SE Orlec Trinket – istok“ za ekološku, vrijede i odnose se na svu floru, faunu i staništa, a ne samo ciljne vrste očuvanja ekološke mreže.

Kumulativni utjecaj SE Orlec Trinkel - zapad i SE Orlec Trinkel - istok

U okolnom području lokacije SE Orlec Trinkel – zapad nalazi se planirani drugi dio projekta solarne elektrane na ovoj lokaciji - SE Orlec Trinkel – istok (*Slika 4.5-1.*). Obje SE planirane su kao dva neovisna postrojenja, čija gradnja i korištenje ne moraju biti istovremeni i udruženi.

Buka emitirana tijekom gradnje predmetnog (zapadna SE) će biti kratkotrajna te će se emitirati isključivo tijekom izgradnje SE, a u kumulativnom smislu moguća je sinergija buke s bukom izgradnje istočne SE, ovisno o vremenskom razmaku u kojem se gradi pojedina SE. Trenuto se projektiraju jedna za drugom, ishodiše dozvola je u značajnom vremenskom razmaku pa i gradnja vjerojatno neće teći istovremeno na istočnoj i zapadnoj SE. Isto vrijedi i za prisustvo ljudi i strojeva u ovom dijelu staništa životinja.

Zbog tzv. „efekta jezera” je potrebno obavezno prikupljanje podataka o mogućim kolizijama ptica sa solarnim panelima nakon izgradnje solarne elektrane. Efekt ovisi o kutu gledanja na panele, dobu dana (poziciji sunca danju ili mjeseca noću) i visini s koje ih ptica gleda (što niže leti, to se više razlučuju paneli od okolnog prostora koji ne odražava svjetlost efektom prividnog površine jezera). Kod „SE Orlec Trinkel – istok” je već propisano praćenje stradavanja ptica nakon postupka Glavne ocjene prihvatljivosti za ekološku mrežu. Okvirno možemo reći da efekt jezera na površini od 13,72 ha na „SE Orlec Trinkel – istok” nakon oko 1 km razmaka dodatno pojačan efektom na površini od oko 7,56 ha na „SE Orlec Trinkel – zapad“.

Kumulativni utjecaj u vidu fragmentacije staništa u prostoru pojačan je kada se uzmu u obzir oba obuhvata zahvata. Zapadna SE s oko 16 ha obuhvata zahvata te istočna s 21 ha. Međutim, problem ne leži u velikim površinama panela, kako za staništa, tako ni za životinje jer su paneli podignuti od tla (najniža točka 50 cm od tla), već je problem u potrebi da se ograde skupina panela. Zbog toga je

Izgradnja sunčane elektrane Orlec Trinkel - zapad
predviđeno projektom da žičana ograda ne seže do tla, već mora biti podignuta bar 5 cm kako bi nesmetano propuštila male sisavce, vodozemce i gmazove. Također, za istočnu SE propisane su mjere zaštite u vidu ostavljanja vegetacijskih koridora u obuhvatu zahvata (između ograđenih skupina panela) povoljnih za kretanja većih životinja. Ista mjera je predložena i ovim elaboratom za SE-zapad.

Kako prilikom rada sunčanih elektrana ne nastaju nusproizvodi ili povećane emisije buke, prašine ili vibracija, pa se ne očekuje niti njihov kumulativni učinak dviju SE.

Slika 4.5-1. Izvod iz Prostornog plana Primorsko-goranske županije: 1. Korištenje i namjena površina ("Službene novine Primorsko-goranske županije" broj 32/13 i 7/17-ispr.)

Slika 4.5-2. Prikaz površina skupina panela koje daju „efekt jezera” pticama, desno SE Orlec Trinket – zapad, lijevo: SE Orlec Trinket – istok
4.6. Opis obilježja utjecaja

Obilježja utjecaja tijekom građenja

<table>
<thead>
<tr>
<th>Sastavnica okoliša</th>
<th>UTJECAJ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Akcidentne situacije</td>
</tr>
<tr>
<td>Tlo</td>
<td>-2, I</td>
</tr>
<tr>
<td>Voda</td>
<td>0</td>
</tr>
<tr>
<td>Zrak</td>
<td>0</td>
</tr>
<tr>
<td>Flora</td>
<td>-2, I</td>
</tr>
<tr>
<td>Fauna</td>
<td>-1, I</td>
</tr>
<tr>
<td>Ljudi i ljudsko zdravlje</td>
<td>0</td>
</tr>
<tr>
<td>Materijalna dobra</td>
<td>0</td>
</tr>
<tr>
<td>Krajobraz</td>
<td>-2, I</td>
</tr>
<tr>
<td>Klima</td>
<td>0</td>
</tr>
<tr>
<td>Zaštićena područja</td>
<td>0</td>
</tr>
<tr>
<td>Ekološka mreža</td>
<td>0</td>
</tr>
</tbody>
</table>

Tumač oznaka:
- I = IZRAVNI, N = NEIZRAVNI, S = SEKUNDARNI, K = KUMULATIVNI
- Učinak utjecaja: Negativan (-), Neutralan (0), Pozitivan (+)
- Značaj utjecaja: Izrazito jak, Jak, Umjeran, Malen, Zanemariv, Nema utjecaja, Zanemariv, Malen, Umjeran, Jak, Izrazito jak
- Kvantitativna oznaka: -5, -4, -3, -2, -1, 0, +1, +2, +3, +4, +5

Izgradnja sunčane elektrane Orlec Trinket - zapad
Obilježja utjecaja tijekom korištenja

<table>
<thead>
<tr>
<th>Sastavnica okoliša</th>
<th>UTJECAJ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Akcidentne situacije</td>
</tr>
<tr>
<td>Tlo</td>
<td>-1, I</td>
</tr>
<tr>
<td>Voda</td>
<td>0</td>
</tr>
<tr>
<td>Zrak</td>
<td>0</td>
</tr>
<tr>
<td>Flora</td>
<td>-1, I</td>
</tr>
<tr>
<td>Fauna</td>
<td>0</td>
</tr>
<tr>
<td>Ljudi i ljudsko zdravlje</td>
<td>-1,I,N</td>
</tr>
<tr>
<td>Materijalna dobra</td>
<td>0</td>
</tr>
<tr>
<td>Krajobraz</td>
<td>-1,I</td>
</tr>
<tr>
<td>Klima</td>
<td>0</td>
</tr>
<tr>
<td>Zaštićena područja</td>
<td>0</td>
</tr>
<tr>
<td>Ekološka mreža</td>
<td>0</td>
</tr>
</tbody>
</table>

Tumač oznaka:
- I = Izravni
- N = Neizravni
- S = Sekundarni
- K = Kumulativni

Učinak utjecaja:
- Negativan (-)
- Neutralan (0)
- Pozitivan (+)

Značaj utjecaja:
- Izrazito jak
- Jak
- Umjeren
- Malen
- Zanemariv

Kvantitativna oznaka:
- Nema utjecaja
- Zanemariv
- Malen
- Umjeren
- Jak
- Izrazito jak

Kvantitativna oznaka:
- -5
- -4
- -3
- -2
- -1
- 0
- +1
- +2
- +3
- +4
- +5
5. PRIJEDLOG MJERA ZAŠTITE OKOLIŠA I PRAĆENJE STANJA OKOLIŠA

Mjere zaštite stanovništva

Uz pravilno izvođenje radova prilikom izgradnje sunčane elektrane utjecaji vezani uz izvor buke te stvaranje prašine od rada na gradilištu i transporta bit će lokalni i kratkotrajni zbog čega se smatraju manje značajnima. Dodatne mjere zaštite radnika i lokalnog stanovništva nisu potrebne.

Tijekom rada elektrane također nema potrebe za dodatnim mjerama zaštite ljudi i ljudskog zdravlja.

Mjere zaštite zraka

Tijekom izvođenja građevinskog zahvata nije moguće potpuno izbjegati povremeno lokalno povećanje emisije prašine i ispušnih plinova strojeva i vozila u zrak za vrijeme radova za suhog vremena. Međutim, provođenjem mjera propisanih pravilnikom o zaštiti na radu na gradilištu (prskanjem vodom površina na gradilištu te sporijom vožnjom građevinskih vozila uz prekrivanje tereta) i ostalom zakonskom regulativom negativan utjecaj može se svesti na najmanju moguću i prihvatljivu mjeru.

Tijekom rada elektrane ne proizvode se staklenički plinovi te nema emisija štetnih sastojaka u okoliš. S obzirom na tehnologiju, negativnog utjecaja na kvalitetu zraka nema, stoga nisu potrebne dodatne mjere zaštite kvalitete zraka.

Mjere zaštite klime

S obzirom na to da utjecaja zahvata na klimatske promjene nema, dodatne mjere zaštite klime nisu potrebne.

Prijedlog mjera mogućnosti prilagodbe zahvata na utjecaj klimatskih promjena na planirani zahvat

S obzirom na sprovedene odgovarajuće procjene rizika te pravodobnost pripreme i obrane od požara, posljedice takvih događaja su male, stoga navedene promjene na planiran zahvat neće utjecati u značajnijoj mjeri te nije potrebno provesti dodatne mjere prilagodbe zahvata na utjecaj klimatskih promjena.

Mjere zaštite voda

Tijekom izvođenja građevinskih radova, pravilnim vođenjem gradilišta osigurat će se sigurno rukovanje i skladištenje štetnih i opasnih tvari u skladu s pravilima struke i pozitivnom zakonskom regulativom te se akcidentne situacije, ako do njih i dođe svode na najmanju moguću i prihvatljivu razinu i nisu značajne. Stoga nije potrebno propisivati posebne mjere zaštite voda tijekom izgradnje elektrane.

Pri radu sunčane elektrane ne nastaju tehnološke otpadne vode niti se predviđa korištenje vode osim za potrebe protupožarne zaštite u svrhu koje je projektom predviđen spremnik od 12 m³.
Za prihvat ulja iz transformatora u slučaju incidentnog izlijevanja projektom je predviđena vodonepropusna temeljna ploča transformatora i uljna kada kada kako bi se spriječilo da eventualno procurjelo ulje dospije u okoliš što za posljedicu može imati njihovu infiltraciju u tlo i podzemlje. Stoga nije potrebno propisivati posebne mjere zaštite voda tijekom korištenja elektrane.

Mjere zaštite tla

Izvođenje građevinskih radova u skladu s pravilima struke, pravilnom organizacijom gradilišta, adekvatnim načinom gradnje i korištenjem ispravne mehanizacije, odlaganjem viška materijala iz iskopa na deponiju odobrenu od nadležnih tijela, adekvatnom građevinskom načinom i korištenjem ispravne mehanizacije, odlaganjem viška materijala iz iskopa na deponiju odobrenu od nadležnih tijela, adekvatnom načinom građevinske radnje i korištenjem ispravne mehanizacije, odlaganjem viška materijala iz iskopa na deponiju odobrenu od nadležnih tijela, adekvatnom načinom građevinske radnje i korištenjem ispravne mehanizacije, odlaganjem viška materijala iz iskopa na deponiju odobrenu od nadležnih tijela, adekvatnom načinom građevinske radnje i korištenjem ispravne mehanizacije, odlaganjem viška materijala iz iskopa na deponiju odobrenu od nadležnih tijela, adekvatnom načinom građevinske radnje i korištenjem ispravne mehanizacije, odlaganjem viška materijala iz iskopa na deponiju odobrenu od nadležnih tijela, adekvatnom načinom građevinske radnje i korištenjem ispravne mehanizacije, odlaganjem viška materijala iz iskopa na deponiju odobrenu od nadležnih tijela, adekvatnom načinom građevinske radnje i korištenjem ispravne mehanizacije, odlaganjem viška materijala iz iskopa na deponiju odobrenu od nadležnih tijela, adekvatnom načinom građevinske radnje i korištenjem ispravne mehanizacije, odlaganjem viška materijala iz iskopa na deponiju odobrenu od nadležnih tijela, adekvatnom načinom građevinske radnje i korištenjem ispravne mehanizacije, odlaganjem viška materijala iz iskopa na deponiju odobrenu od nadležnih tijela, adekvatnom načinom građevinske radnje i korištenjem ispravne mehanizacije, odlaganjem viška materijala iz iskopa na deponiju odobrenu od nadležnih tijela, adekvatnom načinom građevinske radnje i korištenjem ispravne mehanizacije, odlaganjem viška materijala iz iskopa na deponiju odobrenu od nadležnih tijela, adekvatnom načinom građevinske radnje i korištenjem ispravne mehanizacije, odlaganjem viška materijala iz iskopa na deponiju odobrenu od nadležnih tijela, adekvatnom načinom građevinske radnje i korištenjem ispravne mehanizacije, odlaganjem viška materijala iz iskopa na deponiju odobrenu od nadležnih tijela, adekvatnom načinom građevinske radnje i korištenjem ispravne mehanizacije, odlaganjem viška materijala iz iskopa na deponiju odobrenu od nadležnih tijela, adekvatnom načinom građevinske radnje i korištenjem ispravne mehanizacije, odlaganjem viška materijala iz iskopa na deponiju odobrenu od nadležnih tijela, adekvatnom načinom građevinske radnje i korištenjem ispravne mehanizacije, odlaganjem viška materijala iz iskopa na deponiju odobrenu od nadležnih tijela, adekvatnom načinom građevinske radnje i korištenjem ispravne mehanizacije, odlaganjem viška materijala iz iskopa na deponiju odobrenu od nadležnih tijela, adekvatnom načinom građevinske radnje i korištenjem ispravne mehanizacije, odlaganjem viška materijala iz iskopa na deponiju odobrenu od nadležnih tijela, adekvatnom načinom građevinske radnje i korištenjem ispravne mehanizacije, odlaganjem viška materijala iz iskopa na deponiju odobrenu od nadležnih tijela, adekvatnom načinom građevinske radnje i korištenjem ispravne mehanizacije, odlaganjem viška materijala iz iskopa na deponiju odobrenu od nadležnih tijela, adekvatnom načinom građevinske radnje i korištenjem ispravne mehanizacije, odlaganjem viška materijala iz iskopa na deponiju odobrenu od nadležnih tijela, adekvatnom načinom građevinske radnje i korištenjem ispravne mehanizacije, odlaganjem viška materijala iz iskopa na deponiju odobrenu od nadležnih tijela, adekvatnom načinom građevinske radnje i korištenjem ispravne mehanizacije, odlaganjem viška materijala iz iskopa na deponiju odobrenu od nadležnih tijela, adekvatnom načinom građevinske radnje i korištenjem ispravne mehanizacije, odlaganjem viška materijala iz iskopa na deponiju odobrenu od nadležnih tijela, adekvatnom načinom građevinske radnje i korištenjem ispravne mehanizacije, odlaganjem viška materijala iz iskopa na deponiju odobrenu od nadležnih tijela, adekvatnom načinom građevinske radnje i korištenjem ispravne mehanizacije, odlaganjem viška materijala iz iskopa na deponiju odobrenu od nadležnih tijela, adekvatnom načinom građevinske radnje i korištenjem ispravne mehanizacije, odlaganjem viška materijala iz iskopa na deponiju odobrenu od nadležnih tijela, adekvatnom načinom građevinske radnje i korištenjem ispravne mehanizacije, odlaganjem viška materijala iz iskopa na deponiju odobrenu od nadležnih tijela, adekvatnom načinom građevinske radnje i korištenjem ispravne mehanizacije, odlaganjem viška materijala iz iskopa na deponiju odobrenu od nadležnih tijela, adekvatnom načinom građevinske radnje i korištenjem ispravne mehanizacije, odlaganjem viška materijala iz iskopa na deponiju odobrenu od nadležnih tijela, adekvatnom načinom građevinske radnje i korištenjem ispravne mehanizacije, odlaganjem viška materijala iz iskopa na deponiju odobrenu od nadležnih tijela, adekvatnom načinom građevinske radnje i korištenjem ispravne mehanizacije, odlaganjem viška materijala iz iskopa na deponiju odobrenu od nadležnih tijela, adekvatnom načinom građevinske radnje i korištenjem ispravne mehanizacije, odlaganjem viška materijala iz iskopa na deponiju odobrenu od nadležnih tijela, adekvatnom načinom građevinske radnje i korištenjem ispravne mehanizacije, odlaganjem viška materijala iz iskopa na deponiju odobrenu od nadležnih tijela, adekvatnom načinom građevinske radnje i korištenjem ispravne mehanizacije, odlaganjem viška materijala iz iskopa na deponiju odobrenu od nadležnih tijela, adekvatnom načinom građevinske radnje i korištenjem ispravne mehanizacije, odlaganjem viška materijala iz iskopa na deponiju odobrenu od nadležnih tijela, adekvatnom načinom građevinske radnje i korištenjem ispravne mehanizacije, odlaganjem viška materijala iz iskopa na deponiju odobrenu od nadležnih tijela, adekvatnom načinom građevinske radnje i korištenjem ispravne mehanizacije, odlaganjem viška materijala iz iskopa na deponiju odobrenu od nadležnih tijela, adekvatnom načinom građevinske radnje i korištenjem ispravne mehanizacije, odlaganjem viška materijala iz iskopa na deponiju odobrenu od nadležnih tijela, adekvatnom načinom građevinske radnje i korištenjem ispravne mehanizacije, odlaganjem viška materijala iz iskopa na deponiju odobrenu od nadležnih tijela, adekvatnom načinom građevinske radnje i korištenjem ispravne mehanizacije, odlaganjem viška materijala iz iskopa na deponiju odobrenu od nadležnih tijela, adekvatnom načinom građevinske radnje i korištenjem ispravne mehanizacije, odlaganjem viška materijala iz iski
4) Osigurati koridore za prolaz životinja između skupina panela na način da se grupirani paneli ograđuju ogradom, a prostor između njih ostavi kao prolaze s prirodnom grmolikom vegetacijom.

5) Ukoliko se na području zahvata uoči invazivna vrsta pajasen (Ailanthus altissima), sve zapažene jedinke moraju se odmah ukloniti na odgovarajući način (sječom svih izbojaka do tla i premazivanjem odgovarajućim herbicidnim sredstvom, dva do tri puta godišnje).

6) Prije početka izgradnje zahvata „SE Orlec Trinkel – istok” potrebno je angažirati stručnjaka botaničara koji će vidljivo obilježiti svaku nađenu jedinku iznimno rijetke i ugrožene te strogo zaštićene vrste biljaka kako bi se kretanjem ljudi i strojeva pri montaži temelja i konstrukcije za panele moglo izbjegati unistiavanje zaštićenih biljaka na lokaciji.

Prijedlog mjera ublažavanja negativnih posljedica zahvata na ciljeve očuvanja očuvanja i cjelovitost područja ekološke mreže tijekom korištenja zahvata:

1) Nakon izgradnje zahvata održavati travnjake ispašom ovaca kako bi se spriječilo zaraštavanje krških suhih travnjaka.

2) Ukloniti sve dijelove ispod panela koji mogu nanijeti ozljede životinjama na ispaši.

3) Ne koristiti pesticide i ostale kemikalije za suzbijanje rasta vegetacije.

Sve navedene mjere, koje su rezultat provedene Glavne ocjene o prihvatljivosti za ekološku mrežu za istočnu sunčanu elektranu „Orlec Trinkel – istok” ne pogoduju samo ciljnim staništima, biljnim i životinjskim vrstama očuvanja ekološke mreže, već zbog raznolikosti taksonomskih skupina koje se štite ekološkom mrežom ujedno ublažavaju utjecaj na sve ostale biljne i životinjske vrste na lokaciji. Zbog iznimne sličnosti zahvata istočne i zapadne SE Orlec Trinkel, načina gradnje i korištenja, lokacije u istom stanišnom tipu, očekuju se isti utjecaji. Stoga se predlaže usvajanje predloženih mjera ublažavanja i programa praćenja ptica u ovom postupku Ocjene o potrebi procjene utjecaja zahvata na okoliš, prilagođenih situaciji lokacije SE Orlec Trinkel – zapad, zbog čega nema značajnih okolnosti koje bi zahtijevalo provođenje postupka Glavne ocjene prihvatljivosti zahvata za ekološku mrežu.

Mjere zaštite krajobraza

Tijekom izvođenja zahvata nije moguće izbjeći negativni vizualni utjecaj na krajobraznu vizuru zbog prisutnosti radnih strojeva, opreme i materijala potrebnog za gradnju. Međutim, ovaj je utjecaj ograničenog trajanja i nakon završetka radova u potpunosti i trajno nestaje te stoga nema potrebe za dodatnim mjerama zaštite.

Korištenjem elektrane krajobraz nije značajno ugrožen. Negativni utjecaj dodatno će se ublažiti projektom krajobraznog uređenja predviđenim prostorno – planskom dokumentacijom pa zbog toga dodatne mjere zaštite nisu potrebne.

Mjere zaštite kulturno – povijesne baštine

Utjecaja na kulturno – povijesnu baštinu nema te se smatra da dodatne mjere zaštite nisu potrebne.
Mjere zaštite gospodarstva
Dodatne mjere zaštite nisu potrebne jer negativnog utjecaja na gospodarski razvoj područja u kojem se nalazi predmetni zahvat nema.

Mjere zaštite od buke
Tijekom izvođenja zahvata nije moguće izbjeći povećanje razine buke, međutim, utjecaj je privremen i ograničenog vremenskog trajanja, vezan uz radni proces i radno vrijeme gradilišta pa kao takav ne predstavlja značajan negativan utjecaj te stoga pored postojećih zakonskih propisa, nije potrebno propisivati dodatne mjere zaštite.

Nakon završetka zahvata nema potrebe za dodatnim mjerama zaštite od buke jer se procjenjuje da su utjecaji tijekom rada elektrane na buku okolnog područja mali i lokalni te nisu značajni.

Mjere zaštite od utjecaja otpada
Tijekom izgradnje i korištenja sunčane elektrane sve nastale otpadne tvari bit će zbrinute u skladu s propisima te dodatne mjere zaštitite od utjecaja otpada nisu potrebne.

Mjere zaštite prometa
Tijekom izgradnje i rada elektrane negativnog utjecaja na promet nema te se smatra da dodatne mjere zaštite prometa nisu potrebne.

Mjere zaštite od svjetlosnog onečišćenja
Kod izgradnje i rada sunčane elektrane do promjene u razini prirodne svjetlosti u noćnim uvjetima neće doći te dodatne mjere zaštite nisu potrebne.
Prijedlog programa praćenja stanja okoliša

Tijekom rada sunčane elektrane tehničko održavanje i praćenje svih parametara na meteorološkoj stanici provodit će se redovno te sukladno propisima i izdanim dozvolama.

Program praćenja stradavanja ptica treba obuhvatiti razdoblje od dvije godine nakon izgradnje/puštanja u rad sunčane elektrane. Dinamika praćenja treba biti u razmaku od 7-14 dana te jednom intervalu od 28 dana (zimi). U Tablici 5.1. razrađena je dinamika praćenja. Nije obavezno držati se točnih kalendarskih dana iz Tablice 5.1., nego razmaka između pojedinih izlazaka te frekvencije u određenom mjesecu ili razdoblju migracije.

Tablica 5.1. Predložena dinamika praćenja stradavanja ptica (Institut za istraživanje i razvoj održivih ekosustava (2016), Studija za glavnu ocjenu prihvatljivosti zahvata za ekološku mrežu za zahvat „Sunčana elektrana Orlec Trinket-istok“

<table>
<thead>
<tr>
<th>Mjesečni izlazak</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
<th>Ukupno</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kalendarski dan</td>
<td>14</td>
<td>11</td>
<td>10</td>
<td>7</td>
<td>5</td>
<td>2</td>
<td>14</td>
<td>11</td>
<td>1</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>25</td>
<td>17</td>
<td>14</td>
<td>12</td>
<td>16</td>
<td>28</td>
<td>18</td>
<td>8</td>
<td>13</td>
<td>17</td>
<td>15</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>21</td>
<td>19</td>
<td>30</td>
<td></td>
<td></td>
<td>25</td>
<td>15</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Broj izlazaka</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>35</td>
</tr>
</tbody>
</table>

Obilaziti cijelo područje solarne elektrane te geopozicionirati usmrćene jedinke kako bi se mogli izdvojiti pojedinačni paneli koji potencijalno uzrokuju veću smrtnost. Svaku usmrćenu jedinku mora se fotografirati, sakupiti i predati nadležnim tijelima. Opisanu radnju može izvoditi tehničko osoblje sunčane elektrane, nakon što je educirano od strane ornitologa. Fotografije usmrćenih jedinki mora provjeriti ornitolog.

Tijekom prve godine praćenja planirati ukupno 35 izlazaka te ih koncentrirati na razdoblje migracija kada se potencijalno očekuje najveći utjecaj. Na temelju rezultata praćenja prve godine može se modulariti dinamika za narednu godinu. Odnosno, ako se redovito ne zabilježe usmrćene ptice, tada se dinamika praćenja može prorijediti na 50% istraživačkog napora, tj. na 18 izlazaka.

Rezultate i analizu svih aktivnosti praćenja stradavanja/smrtnosti ptica dostaviti središnjem tijelu državne uprave nadležnom za poslove zaštite prirode na kraju svake godine praćenja, najkasnije mjesec dana od završetka praćenja, uz obveznu procjenu potrebe, odnosno prijedloga dodatnih mjera ublažavanja negativnih utjecaja zahvata na ptice.

U ovisnosti o rezultatima, u završnom dvogodišnjem izvješću procijeniti postoji li potreba za daljnjim praćenjem stradavanja/smrtnosti ptica te ukoliko postoji, dati prijedlog potrebnih aktivnosti.
Mišljenje o potrebi primjene dodatnih mjera ublažavanja te potrebi nastavka programa praćenja stradavanja/smrtnosti ptica donosi središnje tijelo državne uprave nadležno za poslove zaštite prirode.
6. IZVORI PODATKA

Projekti, studije, radovi, web stranice:

Prostorno planska dokumentacija

Prostorni plan Primorsko-goranske županije županije ("Službene novine Primorsko-goranske županije" broj 32/13 i 7/17-ispr.)

Prostorni plan uređenja Grada Cresa ("Službene novine Primorsko-goranske županije", broj 31/02. i 23/06.-uskl. i 03/11.)

Strategija zaštite okoliša PGŽ. Županijski zavod za održivi razvoj i prostorno planiranje PGŽ, 2005.

Projektna dokumentacija

Elaborat ocjene o potrebi procjene utjecaja zahvata „Izgradnja sunčane elektrane Orlec Trinket – Istok“. IRES EKOLOGIJA, Zagreb, 2015.

Energetika i utjecaj sunčanih elektrana na okoliš

Stanovništvo i naseljenost

Njeašmić I. (2005): Demogeografiija: Stanovništvo u prostornim odnosima i procesima. Školska knjiga, Zagreb

Studija krajobraza Otoka Cresa. Pilot projekt lokalnog razvoja "Otok Cres". 2015

Državni zavod za statistiku: www.dzs.hr

Službene stranice grad Cresa: www.cres.hr

Izgradnja sunčane elektrane Orlec Trinket - zapad
Kvaliteta zraka

Godišnje izvješće o praćenju kvalitete zraka na području Republike Hrvatske za 2016. godinu, Hrvatska agencija za okoliš i prirodu, 2016.

Klimatološka obilježja

Peto nacionalno izvješće Republike Hrvatske prema Okvirnoj konvenciji Ujedinjenih naroda o promjeni klime (UNFCCC), Zagreb, 2009.

Studija krajobraza Otoka Cresa. Pilot projekt lokalnog razvoja "Otok Cres". 2015

Državni hidrometeorološki zavod: www.meteo.hr

Hidrološka i hidrogeološka obilježja

Studija krajobraza Otoka Cresa, Pilot projekt lokalnog razvoja "Otok Cres". 2015

Izvadak iz Registra vodnih tijela – Plan upravljanja vodnim područjima 2016. – 2021., Hrvatske vode, Zagreb

Geološka i seizmološka obilježja

Magaš, N. (1973): Tumač za list Cres L33-113, Beograd

Studija krajobraza Otoka Cresa. Pilot projekt lokalnog razvoja "Otok Cres". 2015

Karte potresnih područja RH. Geofizički odsjek, PMF: http://seizkarta.gfz.hr/

Geomorfološka obilježja

Elaborat zaštite okoliša za ocjenu o potrebi procjene utjecaja zahvata na okoliš

Studija krajobraza Otoka Cresa. Pilot projekt lokalnog razvoja "Otok Cres". 2015

Buzjak, N. (1997): Krško podzemlje otoka Cresa, Geografski horizont, god. 43, br. 2

Pedološka obilježja

Pedološko kartiranje, GIS i analize tla, Poljoprivredni fakultet u Osijeku: http://pedologija.com.hr/karte.htm

Studija krajobraza Otoka Cresa. Pilot projekt lokalnog razvoja "Otok Cres", 2015

Bioraznolikost i zaštite prirode

Javna ustanova Priroda - http://www.ju-priroda.hr/

Hutinec B. (2008.) Priručnik za inventarizaciju, kartiranje i praćenje stanja Vodozemci i gmazovi (Elaphe quatuorlineata), Državni zavod za zaštitu prirode, Zagreb.

Katalog strogo zaštićenih vrsta u Republici Hrvatskoj - http://zasticenevrste.azo.hr/

Kletečki, E. (2009): Znanstvena analiza vrsta vodozemaca i gmazova (Triturus carnifex, Triturus dobrogicus, Elaphe quatuorlineata, Zamenis situla i Proteus anguinus) s dodatka II Direktive o zaštiti prirodnih staništa i divlje flore i faune. Hrvatski prirodoslovni muzej, Zagreb

Nacionalna klasifikacija staništa RH (IV. dopunjena verzija), Državni zavod za zaštitu prirode, 2014

Priručnik za ocjenu prihvatljivosti zahvata za ekološku mrežu (2016), Hrvatska agencija za okoliš i prirod, Zagreb.

Topić i sur. (2006.) Priručnik za inventarizaciju, kartiranje i praćenje stanja staništa, Državni zavod za zaštitu prirode, Zagreb, 1-64.

Tutiš i sur. (2013): Crvena knjiga ptica Hrvatske. Ministarstvo kulture Republike Hrvatske, Državni zavod za zaštitu prirode, Zagreb, 1-244.

Krajobrazna obilježja

Studija krajobraza Otoka Cresa. Pilot projekt lokalnog razvoja "Otok Cres", 2015
Kulturno – povijesna baština

Prostorni plan Primorsko-goranske županije županije ("Službene novine Primorsko-goranske županije" broj 32/13 i 7/17-ispr.)

Prostorni plan uređenja Grada Cresa ("Službene novine Primorsko-goranske županije", broj 31/02. i 23/06.-uskl. i 03/11.)

Gospodarska obilježja

Državni zavod za statistiku: www.dzs.hr

Svjetlosno onečišćenje

Karte svjetlosnog onečišćenja: www.lightpollution.com

Zakonski propisi:

Energetika

- Zakon o energiji (NN 120/12, 14/14, 95/15 i 102/15)
- Zakon o obnovljivim izvorima energije i visokoučinkovitoj kogeneraciji (NN 100/15, 123/16, 131/17)
- Strategija energetskog razvoja Republike Hrvatske do 2020. godine

Prostorno uređenje i graditeljstvo

- Zakon o prostornom uređenju (NN 153/13, 65/17)
- Zakon o gradnji (NN 153/13, 20/17)

Okoliš

- Zakon o zaštiti okoliša (NN 80/13, 78/15, 12/18)
- Nacionalna strategija zaštite okoliša (NN 46/02)
- Uredba o procjeni utjecaja zahvata na okoliš (NN 61/14, 3/17)

Bioraznolikost

- Zakon o zaštiti prirode (NN 80/13, 15/18)
- Pravilnik o popisu stanišnih tipova, karti staništa te ugroženim i rijetkim stanišnim tipovima (NN 88/14)
- Pravilnik o strogo zaštićenim vrstama (NN 144/13, 73/16)
- Uredba o ekološkoj mreži (NN 124/13 i 105/15)

Buka

- Zakon o zaštiti od buke (NN 30/09, 55/13, 153/13, 41/16)
- Pravilnik o djelatnostima za koje je potrebno utvrditi provedbu mjera za zaštitu od buke (NN 91/07)
- Pravilnik o najvišim dopuštenim razinama buke u sredini u kojoj ljudi rade i borave (NN 145/04)
- Pravilnik o mjerama zaštite od buke izvora na otvorenom prostoru (NN 156/08)
Kulturno-povijesna baština

- Zakon o zaštiti i očuvanju kulturnih dobara (NN 69/99, 151/03, 157/03, 87/09, 88/10, 61/11, 25/12, 136/12, 157/13, 152/14, 98/15, 44/17)

Otpad

- Zakon o održivom gospodarenju otpadom (NN 94/13, 73/17)
- Strategija gospodarenja otpadom Republike Hrvatske (NN 130/05)
- Pravilnik o gospodarenju otpadnim uljima (NN 124/06, 121/08, 31/09, 156/09, 91/11, 45/12, 86/13)
- Pravilnik o gospodarenju otpadom (NN 23/07, 111/07, 23/14, 51/14, 121/15, 132/15, 117/17)
- Pravilnik o ambalaži i otpadnoj ambalaži (NN 88/15, 78/16, 116/17)
- Uredba o gospodarenju otpadnom ambalažom (NN 97/15)
- Pravilnik o katalogu otpada (NN 90/15)
- Pravilnik o načinima i uvjetima odlaganja otpada, kategorijama i uvjetima rada za odlagališta otpada (NN 114/15)

Vode

- Zakon o vodama (NN 153/09, 63/11, 130/11, 56/13, 14/14)
- Državni plan mjera za slučaj izvanrednih i iznenadnih onečišćenja voda (NN 5/11)
- Plan upravljanja vodnim područjima 2016 - 2021 (NN 66/16)

Zrak

- Zakon o zaštiti zraka (NN 130/11, 47/14, 61/17)
- Pravilnik o praćenju kvalitete zraka (NN 3/13)

Tlo i poljoprivreda

- Zakon o poljoprivrednom zemljištu (NN 20/18)

Krajobraz

- Zakon o potvrđivanju konvencije o europskim krajobrazima (NN-MU 12/02)

Svjetlosno onečišćenje

- Zakon o zaštiti od svjetlosnog onečišćenja (NN 114/11)

Šume

- Zakon o šumama (NN 140/05, 82/06, 129/08, 80/10, 124/10, 25/12, 68/12, 148/13, 94/14)
- Pravilnik o čuvanju šuma (NN 28/15)

Lovstvo

- Zakon o lovstvu (NN 140/05, 75/09, 153/09, 14/14, 21/16, 41/16, 67/16, 62/17)

Akcidenti

- Zakon o zaštiti na radu (NN 71/14, 118/14, 154/14)
- Zakon o zaštiti od požara (NN 92/10)
- Pravilnik o mjerama zaštite od požara kod građenja (NN 141/11)
7. PRILOZI

1. Rješenje o prihvatljivosti za ekološku mrežu Ministarstva zaštite okoliša i energetike od 28. studenog 2016. godine
Prilog 1.

Rješenje o prihvatljivosti za ekološku mrežu Ministarstva zaštite okoliša i energetike od 28. studenog 2016. godine

Ministarstvo zaštite okoliša i energetike temeljem članka 33. stavka 2. vezano uz članak 29. stavak 1. Zakona o zaštiti prirode (Narodne novine, broj 80/2013), povodom zahtjeva nositelja zahvata Javn ustanove Zavod za prostorno uređenje, Splitska 2, HR-51000 Rijeka, za provođenje glavne ocjene prihvatljivosti za ekološku mrežu za zahvat Sunčana elektrana Orlec Trinket – Istok, nakon provedenog postupka, donosi

RJEŠENJE

I. Namjereni zahvat Sunčana elektrana Orlec Trinket – Istok, na području naselja Orloc, Grad Cres, u Primorsko-goranskoj županiji, nositelja zahvata Javn ustanove Zavod za prostorno uređenje, Splitska 2, HR-51000 Rijeka, a temeljem Studije za glavnu ocjenu prihvatljivosti za ekološku mrežu Sunčana elektrana Orlec Trinket – Istok, a koju je u srpnju 2016. godine izradio ovlaštenik IRES Institut za istraživanje i razvoj održivih ekosustava d.o.o. iz Velike Gorice, Jagodno 100a, prihvatljiv je za ekološku mrežu, uz primjenu zakonom propisanih i ovim rješenjem utvrđenih mjera ublažavanja negativnih utjecaja na ciljeve očuvanja i cjelovitost područja ekološke mreže (A.) te programa praćenja i izvješćivanja o stanju ciljeva očuvanja i cjelovitosti područja ekološke mreže (B.).

A. MJERE UBLAŽAVANJA NEGATIVNIH UTJECAJA NA CILJEVE OČUVANJA I CJELOVITOST PODRUČJA EKOLEŠKE MREŽE

1. U okviru izrade Glavnog projekta izraditi elaborat u kojem će bit prikazan način na koji su u Glavni projekt ugrađene mjere ublažavanja negativnih utjecaja na ciljeve očuvanja i cjelovitosti područja ekološke mreže te program praćenja i izvješćivanja o stanju ciljeva očuvanja i cjelovitosti područja ekološke mreže iz ovog Rješenja. Elaborator mora izraditi pravnu osobu koja ima suglasnost za obavljajuće odgovarajućih stručnih poslova zaštite okoliša.
2. Radove izvoditi u razdoblju od 01. kolovoza do 31. ožujka izvan sezone guježđenja/razmnožavanja ciljnih vrsta.

3. Građevinske radove izvoditi tijekom dnevnog razdoblja, od 10,00 – 18,00 sati, kada je aktivnost ciljnih vrsta četveroprugi kravosas (Elapho quatuorlineata), Blazijev potkovnjak (Rhinocephalus hispidus), veliki potkovnjak (Rhinocephalus ferrugineus), mali potkovnjak (Rhinocephalus bipusidus) najmanja.

4. Očuvati u prirodnom stanju lokvou na lokaciji zahvata.

5. Oko lokve u pojasu od 30 - 50 m, ovisno o konfiguraciji terena, ostaviti pojas netaknuti vegetacije i održati „vegetacijske koridore" širine oko 40 m koji se pružaju prema području sličnih stanišnih uvjeta izvan obuhvata zahvata (Prilog 1. ovog Rješenja).

6. Na lokaciji nalazišta ciljne vrste jadranska kozomoška (Himantoglossum adriaticum), fotonoponski panel pomaknuti za 10 m u smjeru zapada. Sačuvati nalazište u prirodnom obliku bez sječe stabla jasena i okolnih grmova u čijoj polusijeni vrsta obitava (Prilog 2. ovog Rješenja).

7. Osigurati koridor za prolaz životinja na način da se plone s panelima ne ograde u potpunosti, već da se ostave prolazi sa prirodnom vegetacijom.

8. Ukoliko se na području zahvata uoči invazivna vrsta pajaca (Atlantus altissima), sva zapušćene jedinke moraju se odmah ukloniti na odgovarajući način (sječem svih izbojaka do tla i premaživanjem odgovarajućim herbicidnim sredstvom, barem dva do tri puta godišnje).

9. Prilikom građenja i održavanja sunčane elektrane koristiti isključivo postojeće pristupne puteve kako bi se izbjegao stanišni tip listočeno podmediteranski suhi travnjaci sveo na najmanju mogoću mjeru.

10. Nakon obnove prirodne vegetacije, površine zahvata održavati uz ispašu ovaca kao bi se sprječila sucesija i vratilo povoljno stanje krških pašnjaka.

11. Ukloniti sve dijelove ispod panela koji mogu nanijeti ozljede životinjama na ispaši.

12. Zabranjeno je korištenje pesticida i ostalih kemikalija za suzbijanje rasta vegetacije.

B. PROGRAM PRAĆENJA I IZVJEŠČIVANJA O STANJU CILJEVA OCUVANJA I CJELOVITOSTI PODRUČJA EKOLOŠKE MREŽE

Program praćenja strađavanja ptica treba obuhvati razdoblje od dvije godine nakon izgradnje postavljanja u rad solarne elektrane. Dinamika praćenja treba biti u razmaku od 7 - 14 dana te jednom intervalom od 28 dana (zimi). U Tablici 1. razvršćena je dinamika praćenja. Nije se obvezno držati točnih kalendarskih dana iz Tablice 1., nego razmaka između pojedinih izlazaka te frekvencije u određenom mjesecu ili razdoblju migracije.
Tablica 1. Dinamika praćenja smrtnosti ptica (IREB Institut za istraživanje i razvoj održivih ekosustava d.o.o., 2016. Studija za glavnu ocjenu prihvatljivosti za ekološku mrežu Sunčana elektrana Orlec Trinket – Istrič, str. 91)

<table>
<thead>
<tr>
<th>Mjesec</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
<th>Ukupno</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kalendarски dan</td>
<td>14</td>
<td>11</td>
<td>10</td>
<td>7</td>
<td>5</td>
<td>2</td>
<td>14</td>
<td>11</td>
<td>1</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>25</td>
<td>17</td>
<td>14</td>
<td>12</td>
<td>16</td>
<td>28</td>
<td>18</td>
<td>8</td>
<td>13</td>
<td>17</td>
<td>15</td>
<td>101</td>
</tr>
<tr>
<td>Broj izazaka</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>29</td>
</tr>
</tbody>
</table>

Obilaziti cijelo područje SE te geopozicionirati usmrcene jedinke kako bi se mogli izdvojiti pojedinačni paneli koji potencijalno uzrokuju veću smrtnost. Svaku usmrcenu jedinku mora se fotografirati, sakupiti i predati nadležnim tijelima. Opisanu radnju može izvoditi tehničko osoblje SE, nakon što je educirano od strane ornitologa. Fotografije usmrcenih jedinki mora provjeriti ornitológ.

Tijekom prve godine praćenja planirati ukupno 35 izazaka te ih koncentrirati na razdoblje migracije kada se potencijalno očekuje najveći utjecaj. Na temelju rezultata praćenja prve godine može se modulirati dinamika za narednu godinu, odnosno ako se redovito ne zabilježe usmrcene ptice tada se dinamika praćenja može prorijetiti na 50% istraživačkog naporu, tj. na 18 izazaka. Rezultate i analizu svih aktivnosti praćenja smrtnosti ptica dostaviti središnjem tijelu državne uprave nadležnom za poslove zaštite prirode, a taj posao potreban je i za ovu godinu praćenja, uz obveznu procjenu potrebe, odnosno prijedlog dodatnih mjera ublažavanja.

U ovisnosti o rezultatima, u završnom dvogodišnjem izvještaju, procijeniti postoji li potreba za daljnjim praćenjem smrtnosti ptica te uklikovati postoji dati prijedlog potrebnih aktivnosti.

Maližnjenje o potrebi primjene dodatnih mjera ublažavanja te potrebi nastavka programa praćenja smrtnosti ptica donosi središnje tijelo državne uprave nadležno za poslove zaštite prirode.

II. Nositelj zahvata, Javna ustanova Zavod za prostorno uređenje, Splitska 2, HR-51000 Rijeka, dužan je osigurati provedbu mjera ublažavanja negativnih utjecaja na ciljeve očuvanja i cjelovitost područja ekološke mreže te programa praćenja i izvješćivanja o stanju ciljeva očuvanja i cjelovitosti područja ekološke mreže kako je to određeno ovim rješenjem.

III. Ukoliko nositelj zahvata, Javna ustanova Zavod za prostorno uređenje, Splitska 2, HR-51000 Rijeka, ne provede mjere ublažavanja propisane ovim Rješenjem, provest će ih Ministarstvo na njegov trošak.
Elaborat zaštite okoliša za ocjenu o potrebi procjene utjecaja zahvata na okoliš

III. Ovo Rješenje ukinut će se u roku od dvije godine od dana izvršnosti Rješenja ako se u tom roku ne podnese zahtjev za izdavanje lokacijske dozvole, odnosno drugog akta kojim se odobrava gradnja sukladno posebnom zakonu kojim se uređuje prostorno uređenje i gradnja ili drugog akta sukladno Zakonu o zaštiti prirode, odnosno posebnom propisu.

IV. Rok važenja ovog Rješenja može se, na zahtjev nositelja zahvata Javne ustanove Zavod za prostorno uređenje, Splitska 2, HR-51000 Rijeka, jednom produžiti za dvije godine uz uvjet da se nisu promijenili uvjeti u skladu s kojima je ovo Rješenje izdano.

V. Ovo Rješenje objavljuje se na internetskim stranicama Ministarstva.

VI. Sastavni dio ovog Rješenja su prilozi:
- Slika 1. - Trajni koridori nestaknute vegetacije za nasmatanu kretanje fauna,
- Slika 2. - Izmjerenje solarnog panela zbog očuvanja staništa jadranske kozonoske.

Obrázloženje

Elaborat zaštite okoliša za ocjenu o potrebi procjene utjecaja zahvata na okoliš

Izgradnja sunčane elektrane Orlec Trinket - zapad

Stranica 5 od 11

103
višekriterijske analize dokazano da je lokacija istok povoljnija za realizaciju. Nakon dobivanja lokacijske dozvole za SE Orlec Trinkel - Istok pripremit će se i lokacijska dozvola za SE Orlec Trinkel - Zapad, a kumulativni utjecaj obje sunčane elektrane analiziran je u Studiji Glavne ocjene. Vezano uz pitanje oborinskih voda projektom treba predvidjeti da se dio oborina skuplja za potrebe napajanja ovaca. Također, razmak između niza panela bit će 8,5 m te će se tlo u području zahvata prirodno napajati. Isto tako prilikom izdavanja lokacijske dozvole zatraži će se posebni uvjeti Hrvatskih voda koji će se u graditi u Glavnom projektu. Javno izlaganje završilo je u 14,00 sati. U Knjigu primjedbi i prijedloga upisane su tri primjedbe dviju fizičkih osoba koje su sudjelovale i na javnom izlaganju i postavile identična pitanja (primjedbe) na koja su dobili odgovore od strane ovlaštenika i nostalga zahvata.

U provedbi postupka ovo Ministarstvo razmotrilo je predmetni zahtjev, priložen Studiju Glavne ocjene (IRIS Institut za istraživanje i razvoj održivih ekosustava d.o.o., Velika Gorica, srpanj 2016.), mišljenje Agencije, mišljenje javnosti i zaинтересirane javnosti te je utvrdilo sljedeće.

SE Orlec Trinkel – Istok planirana je na području naselja Orlec koje administrativno pripada Gradu Cresu u Primorsko-goranskoj županiji. Područje zahvata obuhvaća k.c.br. 292/2 i 1527/3, sve k.o. Orlec gdje će biti smješteni elementi elektrane (fotonaponski moduli, iznijenjači, transformatorske stanice, pomoćne građevine, parkirna mjesta i ostalo). Prema namjeni, SE Orlec Trinkel - Istok planira se izgraditi kao mrežno vezani fotonaponski sustav koji će u cijelosti proizvedenu električnu energiju predati u elektroenergetsku mrežu, uz što veliku moguću proizvodnju te uz što manje moguće gubitke. SE Orlec Trinkel - Istok planira se izgraditi kao fotonaponska elektrana na tlu snage 6,5 MW sa fiksno postavljenim fotonaponskim (FN) modulima u tehnologiji monokristaličnog silicija, postavljene pod optimalnim kutom od približno 29°, orijentirane na jug. SE Orlec Trinkel - Istok će biti podijeljena na segmente pojedinačne snage 500 kW te će se sastojati od 13 segmanta. FN moduli će biti u nizove po 24 modula. Dimenzije FN modula će biti oko 1600x1000x35 mm, težine približno 22 kg. Postavljanje fotonaponskih panela je predviđeno na način da se izbjegavaju lokalna zasjenjenja od objekata i drugih panela neposredno na lokaciji te izbjegavanja postavljanja FN modula na mjestima gdje je zasjenjenje prisutno u duljem dijelu dana, posebno između 9,00 i 15,00 sati. Paneli će biti postavljeni tako da je njihov najniži dio na visini višoj od 50 cm. SE Orlec Trinkel - Istok će imati 13 segmenta te će se na svakom segment biti po 1 jedan iznijenjač snage 500 kW, dok će se na svaki iznijenjač biti priključeno 80 nizova. Iznijenjači će biti povezani fotonaponskim kablovima do pripadajuće transformatorske stanice u kojoj će se obavljati transformaciju napona sa niskog napona (0,4kV) na srednji napon (10,20 ili 35 kV). Idejnim njezinim predviđenima su tri transformatorske stанице 0,4kV/35kV. Od srednjenaponske strane predmetnih transfostanica, položiti će se srednjenaponski kabel do priključnog rasklopišta RS SE Orlec u kojem će se obaviti priključak na srednenaponsku mrežu HEP ODS. Rasklopište površine 100 m² je predviđeno kao ograde sa sanitarnim čvorom (sabirna jama) koji će se redovito prazniti te potrebna mjerstva za parkiranje. Područje SE Orlec Trinkel – Istok se planira ozidati sa neupadljivom, prozračnom ogradom sivo-bijele boje (boje kamena) uz izvedene prolaze za male životinje. Aktivnosti u fazama izvedbe i rada SE Orlec Trinkel - Istok obuhvaćaju: aktivnosti u pripremnoj
Elaborat zaštite okoliša za ocjenu potrebi procjene utjecaja zahvata na okoliš

Izgradnja sunčane elektrane Orlec Trinket - zapad

fazi (zemljani radovi koji uključuju uklanjanje postojeće vegetacije, kopanje za temelje, kopanje rova za kablove, kočenje terena); aktivnosti u fazi izgradnje obuhvaćaju sve potrebne radove vezane uz montažu samostojeca SE (betoniranje temelja konstrukcija za panele, postavljanje nosive metalne konstrukcije za panele, radovi na ugradnji temeljne kade i postavljanju kudišta postrojenja, montaža i spajanje elektroopreme, unošenje i postavljanje opreme za daljinsko vođenje, polaganje uzemljenja i spajanje elemenata opreme s uzemljenjem, polaganje i spajanje NN i SN kabela, mjerenja, ispitivanja i puštanja u pogon postrojenja, izgradnja rasklopštaja za priključak na mrežu, ogradivanje platna sunčane elektrane, odvojeno sakupljanje i zbrinjavanje otpada van lokacije zahvata); aktivnosti u fazi rada (redovito održavanje sustava SE OrlecTrinket - Istok, održavanje travnjakih površina ispod FN panela - ispuna, redovito pražnjenje suburne jamce); aktivnosti u fazi pretransa korištenja (uklanjanje svih dijelova SE, biološka sanacija površina koje su bile pod panelima te vraćanje prostora u prvobitnu namjenu). Očekivano vrijeme rada SE Orlec Trinket - Istok je 50 godina.

Prema Uredbi o ekološkoj mreži (Narodne novine, br. 124/2013, 105/2015) planirani zahvat našao se unutar područja ekološke mreže - Područja očuvanja značajnija za vrste i stanišne tipove (POVS) HR2001358 Otok Cres i Područja očuvanja značajnija za ptice (POP) HR1000033 Kvarnerski otoči.

Planiranim zahvatom trajno će se prenamjeniti oko 21 ha stanišnog tipa 62A0 Istočno submediteranski suhi travnjaci (ciljni stanišni tip POVS-a HR2001358 Otok Cres), no obzirom da se radi o ciljnom stanišnom tipu koji je u uznapredovalnom stadiju sukcesije te će se trajno preumijeniti relativno mala površina ovog ciljnog stanišnog tipa unutar područja ekološke mreže, ocijenjeno je da utjecaj nije značajno negativan. Također, provedba propisane mjere ublažavanja (omogućavanje ispaše) može pozitivno utjecati na obnovu izvornih križnih pašnjaka, čime se ujedno izrazito pozitivno utječe na povećanje bioraznolikosti područja. Planiranim zahvatom neće doći do značajnog negativnog utjecaja na ciljne vrste šišmiša POVS-a HR2001358 Otok Cres obzirom na veliku raspoloživost prikladnih staništa te uzemlji u obzir vrijeme izvođenja radova tijekom dana u razdoblju od 10,00 do 18,00 sati. Zbog neprikladnosti staništa i velike raspoloživosti stanišnih tipova zahvata unutar područja ekološke mreže, a na koje je moguć utjecaj, zahvatom se neće značajno utjecati niti na ciljine vrste bezkrilnjaka i gnozava. Potencijalni negativni utjecaj moguć je na cilj očuvanja jadranska kozorotka (Hematoglossum adriaticum) koja je terenskim istraživanjem udovoljena na samoj lokaciji zahvata. Kako bi se izbjegli značajni negativni utjecaji, zahvat je modificiran (pomicanje panela), odnosno propisana je odgovarajuća mjera ublažavanja, čime je mogući utjecaj smanjen na minimalnu mjernu. Planirani zahvat u cjelini ne nasladi i unutar POP-a HR1000033 Kvarnerski otoči. Kako bi se mogući utjecaj na ciljne vrste putem svih na minimum propisana je mjera ublažavanja izvođenja radova u razdoblju od 01. kolovoza do 31. ožujka. Za većinu ciljnih vrsta ptica zahvat će imati neutralan utjecaj, dok se za neke vrste očekuje i pozitivan utjecaj zbog restaruje staništa u sukcesiji. Za ciljnu vrstu leganj (Caprimulgus europaeus) očekuje se umjereni negativni utjecaj zbog uklanjanja vegetacije i izmijenjenog staništa, koji će se umanjiti propisanim mjerama ublažavanja (ostavljanje pojasa vegetacije u pojasu od oko 30-50 m oko
Elaborat zaštite okoliša za ocjenu o potrebi procjene utjecaja zahvata na okoliš

lokve u centralnom dijelu zahvata; ostvarivanjem „vegetacijskih koridora“ širine oko 40 m koji se pružaju prema području sličnih stanišnih uvjeta izvan obuhvata zahvata). Propisane mjere ublažavanja osigurat će da ne dođe do značajnog negativnog utjecaja, a ublažiti će i potencijalni kumulativni utjecaj planirane SE Orlec Trinket – Zapad gdje se također očekuje prisutnost legna. Za skupinu ptica koja je vezana uz močvarna staništa i koja bi mogla potencijalno stradati kolizijom s panelima SE zbog tzv. „efekta jezera“ očekuje se utjecaj koji nije značajan.

Slijedom izrijeđenog u provedenom postupku glavne ocjene prihvatljivosti za ekološku mrežu za zahvat SE Orlec Trinket – Istok, Ministarstvo je utvrdilo da je predmetni zahvat prihvatljiv za ekološku mrežu, uz primjenu zakonom propisanih i ovim Rješenjem utvrđenih mjera ublažavanja negativnih utjecaja na ciljeve očuvanja i cjelovitost područja ekološke mreže (A.) te programa praćenja i izvještavanja o stanju ciljeva očuvanja i cjelovitosti područja ekološke mreže (B.).

Članakom 29. stavkom 1. Zakona o zaštiti prirode propisano je da Ministarstvo provodi glavnu ocjenu za zahvate za koje središnje tijelo državne uprave ndaležno za zaštitu okoliša provodi postupak procjene utjecaja na okoliš ili postupak ocjene o potrebi procjene utjecaja na okoliš prema posebnom propisu kojim se uređuje zaštita okoliša i za zahvate na zaštićenom području u kategoriji nacionalnog parka, parka prirode i posebnog rezervata.

Članakom 33. stavkom 2. Zakona o zaštiti prirode propisano je da ako ndaležno tijelo utvrdi, uzimajući u obzir i mišljenje javnosti, da planirani zahvat nema značajan negativan utjecaj na ciljeve očuvanja i cjelovitost područja ekološke mreže, donosi rješenje o prihvatljivosti zahvata za ekološku mrežu.

Mjere ublažavanja negativnih utjecaja na ciljeve očuvanja i cjelovitost područja ekološke mreže, kao i program praćenja i izvještavanja o stanju ciljeva očuvanja i cjelovitosti područja ekološke mreže propisani su temeljem odredbe članka 33. stavka 3. Zakona o zaštiti prirode.

Članakom 41. stavkom 1. Zakona o zaštiti prirode propisano je da ako nositelj zahvata ne proveđe utvrđene mjere ublažavanja, da će ih provesti Ministarstvo na njegov trošak.

Članakom 43. stavkom 1. Zakona o zaštiti prirode propisano je da će se rješenje donijeto u postupku glavne ocjene za zahvate u prostoru ukinut u roku od dvije godine od dana izvršnosti rješenja ako se u tom roku ne podnese zahtjev za izdavanje lokacijske dozvole, odnosno drugog akta kojim se odobrava gradnja sukladno posebnom zakonu kojim se uređuje prostorno uređenje i gradnja ili drugog akta sukladno ovome Zakonu, odnosno posebnom propisu.

Mogućnost produljenja važenja ovog Rješenja propisana je u skladu s odredbama članka 43. stavka 2. Zakona o zaštiti prirode.

U skladu s odredbama članka 44. stavka 2. Zakona o zaštiti prirode ovo Rješenje dostavlja se inspekciji zaštite prirode.
Također ovo Rješenje objavljuje se na internetskoj stranici Ministarstva, a u skladu s odredbama članka 44. stavka 3. Zakona o zaštiti prirode.

UPUTA O PRAVNON LIJEKU
Ovo je rješenje izvijerno u upravnom postupku te se protiv njega ne može izjaviti žalba, ali se može pokrenuti upravni spor pred upravnim sudom na području kojeg tužitelj ima prehvat ili međuzajamno, odnosno sjedište. Upravni spor pokreće se tužbom koja se podnosi u roku od 30 dana od dana dostave ovog rješenja. Tužba se predaje nadležnom upravnom sudsanom u pisanom obliku, usmerno na zapisnik ili se šalje poštom, odnosno dostavlja elektronički.

VODITELJSKA SLUŽBA

Dr. sc. Lorca Elze

DOSTAVITI:
1. Javna ustanova Zavod za prostorno uređenje, Splitska 2, 51000 Rijeka (R s pouzatnicnom),
2. MZOK, Uprava za inspektivske postave, Sektor inspekcijskog nadzora zaštite prirode, ovdje,
3. U spis predmeta, ovdje.

Slika 9 od 11
Elaborat zaštite okoliša za ocjenu o potrebi procjene utjecaja zahvata na okoliš

Izgradnja sunčane elektrane Orlec Trinket

Slika 1. Tranjni koridori nestušene vegetacije za prosmatrano kretanje fauna (crvene strelice), pojas prizadane vegetacije (crna linija) i buffer zona od 30-50 m (crvena linija) (IRES Institut za istraživanja i razvoj održivih ekosustava d.o.o., 2016), Studija za glavnu ocjenu priljubljivosti za ekološku mrežu Sunčana elektrana Orlec Trinket - Istok, str. 94)
Elaborat zaštite okoliša za ocjenu o potrebi procjene utjecaja zahvata na okoliš

Izgradnja sunčane elektrane Orlec Trinket - zapad

Slika 2. Izmještanje solarnog panela zbog očuvanja staništa jadranske kozonoške (IRES Institut za istraživanje i razvoj održivih ekosustava d.o.o., (2016), Studija za glavnu ocjenu prihvaćljivosti za ekološku mrežu Sunčana elektrana Orlec Trinket – Istok, str. 95)